Malena Staudacher, Andréa de Lima Ribeiro, Ruben Wagner, Margret Fuchs, Anja Weidner, Thomas Buchwald, Urs A. Peuker
{"title":"测定质子交换膜水电解器机械应力催化剂包覆膜的脱水效率。","authors":"Malena Staudacher, Andréa de Lima Ribeiro, Ruben Wagner, Margret Fuchs, Anja Weidner, Thomas Buchwald, Urs A. Peuker","doi":"10.1111/jmi.70000","DOIUrl":null,"url":null,"abstract":"<p>The recovery of critical raw materials from water electrolysers, which are used to produce green hydrogen, is essential to keep the raw materials with limited availability in the material cycle and to facilitate the expansion of production of this technology, which is supposed to be essential for the decarbonisation of our industrial society. Proton exchange membrane water electrolysers (PEMWE) use precious metals such as Ir and Pt as catalysts, which require a high recycling rate due to their natural scarcity. In order to investigate at an early-stage mechanical recycling technologies, such as shredding for liberation and milling for decoating of these complex materials, it becomes necessary to develop small-scale experimental methods. This is due to the low availability of End-of-Life samples and the high price of pristine electrolyser components. Especially decoating has shown huge potential for a highly selective separation of defined material layers; nevertheless, until now, there is no method to determine the success of decoating of the flexible polymer membrane, which is coated on both sides with particle-based electrodes. One possible concept is presented here, using scanning electron microscope images and micro-X-ray fluorescence elemental maps. Image processing and segmentation is performed using the WEKA software and a simple thresholding method. This allows the efficiency of the decoating process to be determined with an accuracy of ±0.5 percentage points for decoated PEMWE cell samples. The high accuracy of the presented method framework provides the necessary tool for any further quantitative development of improved mechanical stressing for decoating.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"300 1","pages":"51-67"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70000","citationCount":"0","resultStr":"{\"title\":\"Determining decoating efficiency for mechanically stressed catalyst coated membranes of proton exchange membrane water electrolysers\",\"authors\":\"Malena Staudacher, Andréa de Lima Ribeiro, Ruben Wagner, Margret Fuchs, Anja Weidner, Thomas Buchwald, Urs A. Peuker\",\"doi\":\"10.1111/jmi.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recovery of critical raw materials from water electrolysers, which are used to produce green hydrogen, is essential to keep the raw materials with limited availability in the material cycle and to facilitate the expansion of production of this technology, which is supposed to be essential for the decarbonisation of our industrial society. Proton exchange membrane water electrolysers (PEMWE) use precious metals such as Ir and Pt as catalysts, which require a high recycling rate due to their natural scarcity. In order to investigate at an early-stage mechanical recycling technologies, such as shredding for liberation and milling for decoating of these complex materials, it becomes necessary to develop small-scale experimental methods. This is due to the low availability of End-of-Life samples and the high price of pristine electrolyser components. Especially decoating has shown huge potential for a highly selective separation of defined material layers; nevertheless, until now, there is no method to determine the success of decoating of the flexible polymer membrane, which is coated on both sides with particle-based electrodes. One possible concept is presented here, using scanning electron microscope images and micro-X-ray fluorescence elemental maps. Image processing and segmentation is performed using the WEKA software and a simple thresholding method. This allows the efficiency of the decoating process to be determined with an accuracy of ±0.5 percentage points for decoated PEMWE cell samples. The high accuracy of the presented method framework provides the necessary tool for any further quantitative development of improved mechanical stressing for decoating.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\"300 1\",\"pages\":\"51-67\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.70000\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.70000","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Determining decoating efficiency for mechanically stressed catalyst coated membranes of proton exchange membrane water electrolysers
The recovery of critical raw materials from water electrolysers, which are used to produce green hydrogen, is essential to keep the raw materials with limited availability in the material cycle and to facilitate the expansion of production of this technology, which is supposed to be essential for the decarbonisation of our industrial society. Proton exchange membrane water electrolysers (PEMWE) use precious metals such as Ir and Pt as catalysts, which require a high recycling rate due to their natural scarcity. In order to investigate at an early-stage mechanical recycling technologies, such as shredding for liberation and milling for decoating of these complex materials, it becomes necessary to develop small-scale experimental methods. This is due to the low availability of End-of-Life samples and the high price of pristine electrolyser components. Especially decoating has shown huge potential for a highly selective separation of defined material layers; nevertheless, until now, there is no method to determine the success of decoating of the flexible polymer membrane, which is coated on both sides with particle-based electrodes. One possible concept is presented here, using scanning electron microscope images and micro-X-ray fluorescence elemental maps. Image processing and segmentation is performed using the WEKA software and a simple thresholding method. This allows the efficiency of the decoating process to be determined with an accuracy of ±0.5 percentage points for decoated PEMWE cell samples. The high accuracy of the presented method framework provides the necessary tool for any further quantitative development of improved mechanical stressing for decoating.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.