Sandra Dienemann, Ole Jacob Wohlenberg, Jan Georg Gerstenberger, Antonina Lavrentieva, Iliyana Pepelanova
{"title":"神经祖细胞在降冰片烯明胶(GelNB)水凝胶中的三维培养:机械调谐和缺氧表征。","authors":"Sandra Dienemann, Ole Jacob Wohlenberg, Jan Georg Gerstenberger, Antonina Lavrentieva, Iliyana Pepelanova","doi":"10.3389/fbioe.2025.1579580","DOIUrl":null,"url":null,"abstract":"<p><p>The development of physiologically relevant three-dimensional (3D) culture platforms for neural stem cell (NSC) cultivation is essential for advancing neuroscience research, disease modelling, and regenerative medicine. In this study, we introduce norbornene-functionalized gelatin (GelNB) hydrogels crosslinked with a laminin-based peptide as a bioactive scaffold for NSC culture. A central composite design of experiments (DoE) approach was employed to systematically map hydrogel mechanical properties across varying macromer (4%-7%) and crosslinker (3-9 mM) concentrations via a response surface. This enabled precise tuning of hydrogel stiffness between 0.5 and 3.5 kPa, closely mimicking the mechanical properties of brain tissue. The optimized GelNB hydrogel formulation (5% GelNB, 8 mM crosslinker) supported NSC viability and enhanced NSC cluster formation demonstrating its suitability for 3D neural cell culture. Furthermore, we characterized the onset of hypoxia in 3D constructs using genetically encoded fluorescent hypoxia biosensors, revealing a cell density-dependent hypoxic response. At 3 × 10<sup>6</sup> cells/mL, hypoxic response was detected only after 7 days of cultivation, whereas at 8 × 10<sup>6</sup> cells/mL, hypoxic response was already observed within 24 h, illustrating the importance for using adequate cell numbers to avoid or achieve <i>in situ</i> physiological hypoxia. These findings highlight the importance of controlled ECM properties and oxygen microenvironments in NSC cultivation and provide valuable insights for the development of advanced biomimetic neural tissue models.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1579580"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163324/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D culture of neural progenitor cells in gelatin norbornene (GelNB) hydrogels: mechanical tuning and hypoxia characterization.\",\"authors\":\"Sandra Dienemann, Ole Jacob Wohlenberg, Jan Georg Gerstenberger, Antonina Lavrentieva, Iliyana Pepelanova\",\"doi\":\"10.3389/fbioe.2025.1579580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of physiologically relevant three-dimensional (3D) culture platforms for neural stem cell (NSC) cultivation is essential for advancing neuroscience research, disease modelling, and regenerative medicine. In this study, we introduce norbornene-functionalized gelatin (GelNB) hydrogels crosslinked with a laminin-based peptide as a bioactive scaffold for NSC culture. A central composite design of experiments (DoE) approach was employed to systematically map hydrogel mechanical properties across varying macromer (4%-7%) and crosslinker (3-9 mM) concentrations via a response surface. This enabled precise tuning of hydrogel stiffness between 0.5 and 3.5 kPa, closely mimicking the mechanical properties of brain tissue. The optimized GelNB hydrogel formulation (5% GelNB, 8 mM crosslinker) supported NSC viability and enhanced NSC cluster formation demonstrating its suitability for 3D neural cell culture. Furthermore, we characterized the onset of hypoxia in 3D constructs using genetically encoded fluorescent hypoxia biosensors, revealing a cell density-dependent hypoxic response. At 3 × 10<sup>6</sup> cells/mL, hypoxic response was detected only after 7 days of cultivation, whereas at 8 × 10<sup>6</sup> cells/mL, hypoxic response was already observed within 24 h, illustrating the importance for using adequate cell numbers to avoid or achieve <i>in situ</i> physiological hypoxia. These findings highlight the importance of controlled ECM properties and oxygen microenvironments in NSC cultivation and provide valuable insights for the development of advanced biomimetic neural tissue models.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1579580\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1579580\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1579580","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
3D culture of neural progenitor cells in gelatin norbornene (GelNB) hydrogels: mechanical tuning and hypoxia characterization.
The development of physiologically relevant three-dimensional (3D) culture platforms for neural stem cell (NSC) cultivation is essential for advancing neuroscience research, disease modelling, and regenerative medicine. In this study, we introduce norbornene-functionalized gelatin (GelNB) hydrogels crosslinked with a laminin-based peptide as a bioactive scaffold for NSC culture. A central composite design of experiments (DoE) approach was employed to systematically map hydrogel mechanical properties across varying macromer (4%-7%) and crosslinker (3-9 mM) concentrations via a response surface. This enabled precise tuning of hydrogel stiffness between 0.5 and 3.5 kPa, closely mimicking the mechanical properties of brain tissue. The optimized GelNB hydrogel formulation (5% GelNB, 8 mM crosslinker) supported NSC viability and enhanced NSC cluster formation demonstrating its suitability for 3D neural cell culture. Furthermore, we characterized the onset of hypoxia in 3D constructs using genetically encoded fluorescent hypoxia biosensors, revealing a cell density-dependent hypoxic response. At 3 × 106 cells/mL, hypoxic response was detected only after 7 days of cultivation, whereas at 8 × 106 cells/mL, hypoxic response was already observed within 24 h, illustrating the importance for using adequate cell numbers to avoid or achieve in situ physiological hypoxia. These findings highlight the importance of controlled ECM properties and oxygen microenvironments in NSC cultivation and provide valuable insights for the development of advanced biomimetic neural tissue models.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.