Dong Han, Weiwei Liu, Jinpeng Gong, Yupeng Ma, Zhengwen Sun
{"title":"间充质干细胞用于骨折有效愈合的挑战和未来展望。","authors":"Dong Han, Weiwei Liu, Jinpeng Gong, Yupeng Ma, Zhengwen Sun","doi":"10.3389/fbioe.2025.1568914","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) demonstrate considerable potential for enhancing bone fracture healing due to their multipotency and immunomodulatory properties. This review investigates the relationship between MSCs, the immune system, and the skeletal microenvironment, focusing on the roles of cytokines and signaling pathways in osteogenesis. The healing process of bone fractures is complex and involves a coordinated response from various cell types, including immune cells and MSCs, which secrete bioactive molecules that promote tissue regeneration and modulate inflammation. Despite their promise, challenges such as variability in MSC sources, ethical considerations, regulatory restrictions, and obstacles in achieving effective delivery and retention at fracture sites restrict their clinical application. Recent advancements in MSC-based therapies, including innovative biomaterials, three-dimensional bioprinting, and gene editing technologies, aim to improve the therapeutic efficacy of MSCs. In addition, strategies to rejuvenate aged MSCs and enhance their regenerative capabilities are critical for addressing age-related fractures, as the functionality of MSCs declines with age. Understanding the mechanisms underlying MSC action, including their paracrine signaling and interaction with the bone microenvironment, is essential for optimizing their therapeutic use. Addressing existing limitations in MSC research and application provides a comprehensive perspective on the future of MSC therapies in bone repair. This review discusses the transformative potential of MSCs in regenerative medicine and orthopedics, highlighting the need for further research to unlock their full capabilities and improve clinical outcomes in patients with bone injuries.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1568914"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162511/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges and future perspectives in using mesenchymal stem cells for efficient bone fracture healing.\",\"authors\":\"Dong Han, Weiwei Liu, Jinpeng Gong, Yupeng Ma, Zhengwen Sun\",\"doi\":\"10.3389/fbioe.2025.1568914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells (MSCs) demonstrate considerable potential for enhancing bone fracture healing due to their multipotency and immunomodulatory properties. This review investigates the relationship between MSCs, the immune system, and the skeletal microenvironment, focusing on the roles of cytokines and signaling pathways in osteogenesis. The healing process of bone fractures is complex and involves a coordinated response from various cell types, including immune cells and MSCs, which secrete bioactive molecules that promote tissue regeneration and modulate inflammation. Despite their promise, challenges such as variability in MSC sources, ethical considerations, regulatory restrictions, and obstacles in achieving effective delivery and retention at fracture sites restrict their clinical application. Recent advancements in MSC-based therapies, including innovative biomaterials, three-dimensional bioprinting, and gene editing technologies, aim to improve the therapeutic efficacy of MSCs. In addition, strategies to rejuvenate aged MSCs and enhance their regenerative capabilities are critical for addressing age-related fractures, as the functionality of MSCs declines with age. Understanding the mechanisms underlying MSC action, including their paracrine signaling and interaction with the bone microenvironment, is essential for optimizing their therapeutic use. Addressing existing limitations in MSC research and application provides a comprehensive perspective on the future of MSC therapies in bone repair. This review discusses the transformative potential of MSCs in regenerative medicine and orthopedics, highlighting the need for further research to unlock their full capabilities and improve clinical outcomes in patients with bone injuries.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1568914\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162511/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1568914\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1568914","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Challenges and future perspectives in using mesenchymal stem cells for efficient bone fracture healing.
Mesenchymal stem cells (MSCs) demonstrate considerable potential for enhancing bone fracture healing due to their multipotency and immunomodulatory properties. This review investigates the relationship between MSCs, the immune system, and the skeletal microenvironment, focusing on the roles of cytokines and signaling pathways in osteogenesis. The healing process of bone fractures is complex and involves a coordinated response from various cell types, including immune cells and MSCs, which secrete bioactive molecules that promote tissue regeneration and modulate inflammation. Despite their promise, challenges such as variability in MSC sources, ethical considerations, regulatory restrictions, and obstacles in achieving effective delivery and retention at fracture sites restrict their clinical application. Recent advancements in MSC-based therapies, including innovative biomaterials, three-dimensional bioprinting, and gene editing technologies, aim to improve the therapeutic efficacy of MSCs. In addition, strategies to rejuvenate aged MSCs and enhance their regenerative capabilities are critical for addressing age-related fractures, as the functionality of MSCs declines with age. Understanding the mechanisms underlying MSC action, including their paracrine signaling and interaction with the bone microenvironment, is essential for optimizing their therapeutic use. Addressing existing limitations in MSC research and application provides a comprehensive perspective on the future of MSC therapies in bone repair. This review discusses the transformative potential of MSCs in regenerative medicine and orthopedics, highlighting the need for further research to unlock their full capabilities and improve clinical outcomes in patients with bone injuries.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.