Yukun Song, Erhan Hai, Lixia He, Ning Zhang, Nan Zhang, Junlan Wang, Yupeng Sun, Dengke Zeng, Jiaxin Zhang
{"title":"亚油酸代谢物13-羟基十八烯二酸作为颗粒细胞双相铁下垂调节剂:绵羊闭锁卵泡的多组学分析。","authors":"Yukun Song, Erhan Hai, Lixia He, Ning Zhang, Nan Zhang, Junlan Wang, Yupeng Sun, Dengke Zeng, Jiaxin Zhang","doi":"10.3389/fcell.2025.1610621","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>13-Hydroxyoctadecadienoic acid (13(S)-HODE) is a bioactive lipid derived from linoleic acid, it plays prominent roles in cellular processes such as lipid metabolism, oxidative stress, and apoptosis. Follicular atresia is a complex physiological process involving multiple forms of cell death. Ferroptosis, an iron-dependent form of programmed cell death, has been less studied in the context of follicular atresia.</p><p><strong>Methods: </strong>To investigate the association between ovine follicular atresia and ferroptosis, we performed transcriptomic and metabolomic analyses of healthy and atretic sheep follicles. Notably, sheep follicular granulosa cells were treated with different doses of 13(S)-HODE. Cell viability, lipid peroxidation levels, ferroptosis-related markers, and ferroptosis-related genes were measured.</p><p><strong>Results: </strong>The metabolomic analysis identified 87 and 48 differentially expressed metabolites in healthy and atretic follicles, respectively. Functional enrichment of atretic follicle fluid highlighted pathways related to linoleic acid and purine metabolism. Transcriptomic analysis revealed 250 highly expressed genes in ovarian granulosa cells of atretic follicles. Enrichment analysis indicated that these differentially expressed genes were associated with fatty acid metabolism and ferroptosis. Integration of multi-omics data demonstrated the occurrence of ferroptosis in atretic follicles, where 13(S)-HODE drives granulosa cell ferroptosis via the linoleic acid metabolism pathway; this effect was not dose-dependent. Mechanistic studies showed that low-dose 13(S)-HODE counteracts ferroptosis by promoting glutathione peroxidase 4-mediated lipid peroxidation reduction and increasing glutathione levels.</p><p><strong>Discussion: </strong>In contrast, high-dose 13(S)-HODE induces labile iron accumulation through activation of transferrin receptor and ferritin heavy chain 1, enhancing ferroptosis sensitivity in granulosa cells. These findings provide insights into the molecular mechanisms regulating follicle development and offer potential therapeutic targets for enhanced follicular development and improved reproductive outcomes.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1610621"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162603/pdf/","citationCount":"0","resultStr":"{\"title\":\"Linoleic acid metabolite 13-Hydroxyoctadecadienoic acid as a biphasic ferroptosis modulator in granulosa cells: multi-omics analysis of ovine atretic follicles.\",\"authors\":\"Yukun Song, Erhan Hai, Lixia He, Ning Zhang, Nan Zhang, Junlan Wang, Yupeng Sun, Dengke Zeng, Jiaxin Zhang\",\"doi\":\"10.3389/fcell.2025.1610621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>13-Hydroxyoctadecadienoic acid (13(S)-HODE) is a bioactive lipid derived from linoleic acid, it plays prominent roles in cellular processes such as lipid metabolism, oxidative stress, and apoptosis. Follicular atresia is a complex physiological process involving multiple forms of cell death. Ferroptosis, an iron-dependent form of programmed cell death, has been less studied in the context of follicular atresia.</p><p><strong>Methods: </strong>To investigate the association between ovine follicular atresia and ferroptosis, we performed transcriptomic and metabolomic analyses of healthy and atretic sheep follicles. Notably, sheep follicular granulosa cells were treated with different doses of 13(S)-HODE. Cell viability, lipid peroxidation levels, ferroptosis-related markers, and ferroptosis-related genes were measured.</p><p><strong>Results: </strong>The metabolomic analysis identified 87 and 48 differentially expressed metabolites in healthy and atretic follicles, respectively. Functional enrichment of atretic follicle fluid highlighted pathways related to linoleic acid and purine metabolism. Transcriptomic analysis revealed 250 highly expressed genes in ovarian granulosa cells of atretic follicles. Enrichment analysis indicated that these differentially expressed genes were associated with fatty acid metabolism and ferroptosis. Integration of multi-omics data demonstrated the occurrence of ferroptosis in atretic follicles, where 13(S)-HODE drives granulosa cell ferroptosis via the linoleic acid metabolism pathway; this effect was not dose-dependent. Mechanistic studies showed that low-dose 13(S)-HODE counteracts ferroptosis by promoting glutathione peroxidase 4-mediated lipid peroxidation reduction and increasing glutathione levels.</p><p><strong>Discussion: </strong>In contrast, high-dose 13(S)-HODE induces labile iron accumulation through activation of transferrin receptor and ferritin heavy chain 1, enhancing ferroptosis sensitivity in granulosa cells. These findings provide insights into the molecular mechanisms regulating follicle development and offer potential therapeutic targets for enhanced follicular development and improved reproductive outcomes.</p>\",\"PeriodicalId\":12448,\"journal\":{\"name\":\"Frontiers in Cell and Developmental Biology\",\"volume\":\"13 \",\"pages\":\"1610621\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cell and Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fcell.2025.1610621\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1610621","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Linoleic acid metabolite 13-Hydroxyoctadecadienoic acid as a biphasic ferroptosis modulator in granulosa cells: multi-omics analysis of ovine atretic follicles.
Introduction: 13-Hydroxyoctadecadienoic acid (13(S)-HODE) is a bioactive lipid derived from linoleic acid, it plays prominent roles in cellular processes such as lipid metabolism, oxidative stress, and apoptosis. Follicular atresia is a complex physiological process involving multiple forms of cell death. Ferroptosis, an iron-dependent form of programmed cell death, has been less studied in the context of follicular atresia.
Methods: To investigate the association between ovine follicular atresia and ferroptosis, we performed transcriptomic and metabolomic analyses of healthy and atretic sheep follicles. Notably, sheep follicular granulosa cells were treated with different doses of 13(S)-HODE. Cell viability, lipid peroxidation levels, ferroptosis-related markers, and ferroptosis-related genes were measured.
Results: The metabolomic analysis identified 87 and 48 differentially expressed metabolites in healthy and atretic follicles, respectively. Functional enrichment of atretic follicle fluid highlighted pathways related to linoleic acid and purine metabolism. Transcriptomic analysis revealed 250 highly expressed genes in ovarian granulosa cells of atretic follicles. Enrichment analysis indicated that these differentially expressed genes were associated with fatty acid metabolism and ferroptosis. Integration of multi-omics data demonstrated the occurrence of ferroptosis in atretic follicles, where 13(S)-HODE drives granulosa cell ferroptosis via the linoleic acid metabolism pathway; this effect was not dose-dependent. Mechanistic studies showed that low-dose 13(S)-HODE counteracts ferroptosis by promoting glutathione peroxidase 4-mediated lipid peroxidation reduction and increasing glutathione levels.
Discussion: In contrast, high-dose 13(S)-HODE induces labile iron accumulation through activation of transferrin receptor and ferritin heavy chain 1, enhancing ferroptosis sensitivity in granulosa cells. These findings provide insights into the molecular mechanisms regulating follicle development and offer potential therapeutic targets for enhanced follicular development and improved reproductive outcomes.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.