Wenrui Lu, Kunhong Xiao, Xuemei Zhang, Yuqing Wang, Wenbin Chen, Xierong Wang, Yunxi Ye, Yan Lou, Li Li
{"title":"预测糖尿病黄斑水肿患者抗vegf治疗的解剖反应的机器学习模型。","authors":"Wenrui Lu, Kunhong Xiao, Xuemei Zhang, Yuqing Wang, Wenbin Chen, Xierong Wang, Yunxi Ye, Yan Lou, Li Li","doi":"10.3389/fcell.2025.1603958","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a machine learning model to predict anatomical response to anti-VEGF therapy in patients with diabetic macular edema (DME).</p><p><strong>Methods: </strong>This retrospective study included patients with DME who underwent intravitreal anti-VEGF treatment between January 2023 and February 2025. Baseline data included optical coherence tomography (OCT) features and blood-based metabolic and hematologic markers. The primary outcome was defined as a ≥20% reduction in central retinal thickness (CRT) post-treatment. Feature selection was performed using univariate logistic regression and LASSO regression. Five machine learning algorithms-logistic regression, decision tree, multilayer perceptron, random forest, and support vector machine-were trained and validated. Model performance was evaluated using accuracy, sensitivity, specificity, Area Under the Receiver Operating Characteristic Curve (AUC), and decision curve analysis. The best-performing model was further interpreted using SHAP analysis, and a nomogram was constructed for clinical application.</p><p><strong>Results: </strong>Among the 37 baseline variables, five key predictors were identified: preoperative CRT >400 μm, presence of retinal edema, presence of subretinal fluid (SRF), disorganization of the inner retinal layers (DRIL), and ellipsoid zone (EZ) integrity. The logistic regression model achieved the best performance with an accuracy of 0.83, sensitivity of 0.85, specificity of 0.79, and an AUC of 0.90 (95% CI: 0.81-0.99). SHAP analysis revealed that preoperative retinal edema, DRIL, SRF, and CRT had the strongest positive contributions, while intact EZ was a negative predictor of CRT reduction. A nomogram was developed to facilitate individualized clinical decision-making.</p><p><strong>Conclusion: </strong>We successfully developed a predictive model for anatomical response to anti-VEGF therapy in DME patients. The model identified key features associated with treatment outcomes, providing a valuable tool for personalized therapeutic planning. Further validation in multicenter cohorts is warranted to confirm generalizability and enhance model robustness.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1603958"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162914/pdf/","citationCount":"0","resultStr":"{\"title\":\"A machine learning model for predicting anatomical response to Anti-VEGF therapy in diabetic macular edema.\",\"authors\":\"Wenrui Lu, Kunhong Xiao, Xuemei Zhang, Yuqing Wang, Wenbin Chen, Xierong Wang, Yunxi Ye, Yan Lou, Li Li\",\"doi\":\"10.3389/fcell.2025.1603958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop a machine learning model to predict anatomical response to anti-VEGF therapy in patients with diabetic macular edema (DME).</p><p><strong>Methods: </strong>This retrospective study included patients with DME who underwent intravitreal anti-VEGF treatment between January 2023 and February 2025. Baseline data included optical coherence tomography (OCT) features and blood-based metabolic and hematologic markers. The primary outcome was defined as a ≥20% reduction in central retinal thickness (CRT) post-treatment. Feature selection was performed using univariate logistic regression and LASSO regression. Five machine learning algorithms-logistic regression, decision tree, multilayer perceptron, random forest, and support vector machine-were trained and validated. Model performance was evaluated using accuracy, sensitivity, specificity, Area Under the Receiver Operating Characteristic Curve (AUC), and decision curve analysis. The best-performing model was further interpreted using SHAP analysis, and a nomogram was constructed for clinical application.</p><p><strong>Results: </strong>Among the 37 baseline variables, five key predictors were identified: preoperative CRT >400 μm, presence of retinal edema, presence of subretinal fluid (SRF), disorganization of the inner retinal layers (DRIL), and ellipsoid zone (EZ) integrity. The logistic regression model achieved the best performance with an accuracy of 0.83, sensitivity of 0.85, specificity of 0.79, and an AUC of 0.90 (95% CI: 0.81-0.99). SHAP analysis revealed that preoperative retinal edema, DRIL, SRF, and CRT had the strongest positive contributions, while intact EZ was a negative predictor of CRT reduction. A nomogram was developed to facilitate individualized clinical decision-making.</p><p><strong>Conclusion: </strong>We successfully developed a predictive model for anatomical response to anti-VEGF therapy in DME patients. The model identified key features associated with treatment outcomes, providing a valuable tool for personalized therapeutic planning. Further validation in multicenter cohorts is warranted to confirm generalizability and enhance model robustness.</p>\",\"PeriodicalId\":12448,\"journal\":{\"name\":\"Frontiers in Cell and Developmental Biology\",\"volume\":\"13 \",\"pages\":\"1603958\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cell and Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fcell.2025.1603958\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1603958","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A machine learning model for predicting anatomical response to Anti-VEGF therapy in diabetic macular edema.
Purpose: To develop a machine learning model to predict anatomical response to anti-VEGF therapy in patients with diabetic macular edema (DME).
Methods: This retrospective study included patients with DME who underwent intravitreal anti-VEGF treatment between January 2023 and February 2025. Baseline data included optical coherence tomography (OCT) features and blood-based metabolic and hematologic markers. The primary outcome was defined as a ≥20% reduction in central retinal thickness (CRT) post-treatment. Feature selection was performed using univariate logistic regression and LASSO regression. Five machine learning algorithms-logistic regression, decision tree, multilayer perceptron, random forest, and support vector machine-were trained and validated. Model performance was evaluated using accuracy, sensitivity, specificity, Area Under the Receiver Operating Characteristic Curve (AUC), and decision curve analysis. The best-performing model was further interpreted using SHAP analysis, and a nomogram was constructed for clinical application.
Results: Among the 37 baseline variables, five key predictors were identified: preoperative CRT >400 μm, presence of retinal edema, presence of subretinal fluid (SRF), disorganization of the inner retinal layers (DRIL), and ellipsoid zone (EZ) integrity. The logistic regression model achieved the best performance with an accuracy of 0.83, sensitivity of 0.85, specificity of 0.79, and an AUC of 0.90 (95% CI: 0.81-0.99). SHAP analysis revealed that preoperative retinal edema, DRIL, SRF, and CRT had the strongest positive contributions, while intact EZ was a negative predictor of CRT reduction. A nomogram was developed to facilitate individualized clinical decision-making.
Conclusion: We successfully developed a predictive model for anatomical response to anti-VEGF therapy in DME patients. The model identified key features associated with treatment outcomes, providing a valuable tool for personalized therapeutic planning. Further validation in multicenter cohorts is warranted to confirm generalizability and enhance model robustness.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.