Fatemeh Delavari, Zachary Ekves, Roeland Hancock, Gerry T M Altmann, Sabato Santaniello
{"title":"在阅读单个单词时,脑电图衍生的θ / α频段的大脑连通性会增强。","authors":"Fatemeh Delavari, Zachary Ekves, Roeland Hancock, Gerry T M Altmann, Sabato Santaniello","doi":"10.1007/s11571-025-10280-8","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Although extensive insights about the neural mechanisms of reading have been gained via magnetic and electrographic imaging, the temporal evolution of the brain network during sight reading remains unclear. We tested whether the temporal dynamics of the brain functional connectivity involved in sight reading can be tracked using high-density scalp EEG recordings. <b>Approach:</b> Twenty-eight healthy subjects were asked to read words in a rapid serial visual presentation task while recording scalp EEG, and phase locking value was used to estimate the functional connectivity between EEG channels in the theta, alpha, beta, and gamma frequency bands. The resultant networks were then tracked through time. <b>Main results:</b> The network's graph density gradually increases as the task unfolds, peaks 150-250-ms after the appearance of each word, and returns to resting-state values, while the shortest path length between non-adjacent functional areas decreases as the density increases, thus indicating that a progressive integration between regions can be detected at the scalp level. This pattern was independent of the word's type or position in the sentence, occurred in the theta/alpha band but not in beta/gamma band, and peaked earlier in the alpha band compared to the theta band (alpha: 184 ± 61.48-ms; theta: 237 ± 65.32-ms, <i>P</i>-value <i>P</i> < 0.01). Nodes in occipital and frontal regions had the highest eigenvector centrality throughout the word's presentation, and no significant lead-lag relationship between frontal/occipital regions and parietal/temporal regions was found, which indicates a consistent pattern in information flow. In the source space, this pattern was driven by a cluster of nodes linked to sensorimotor processing, memory, and semantic integration, with the most central regions being similar across subjects. <b>Significance:</b> These findings indicate that the brain network connectivity can be tracked via scalp EEG as reading unfolds, and EEG-retrieved networks follow highly repetitive patterns lateralized to frontal/occipital areas during reading.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10280-8.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"90"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158907/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEG-derived brain connectivity in theta/alpha frequency bands increases during reading of individual words.\",\"authors\":\"Fatemeh Delavari, Zachary Ekves, Roeland Hancock, Gerry T M Altmann, Sabato Santaniello\",\"doi\":\"10.1007/s11571-025-10280-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> Although extensive insights about the neural mechanisms of reading have been gained via magnetic and electrographic imaging, the temporal evolution of the brain network during sight reading remains unclear. We tested whether the temporal dynamics of the brain functional connectivity involved in sight reading can be tracked using high-density scalp EEG recordings. <b>Approach:</b> Twenty-eight healthy subjects were asked to read words in a rapid serial visual presentation task while recording scalp EEG, and phase locking value was used to estimate the functional connectivity between EEG channels in the theta, alpha, beta, and gamma frequency bands. The resultant networks were then tracked through time. <b>Main results:</b> The network's graph density gradually increases as the task unfolds, peaks 150-250-ms after the appearance of each word, and returns to resting-state values, while the shortest path length between non-adjacent functional areas decreases as the density increases, thus indicating that a progressive integration between regions can be detected at the scalp level. This pattern was independent of the word's type or position in the sentence, occurred in the theta/alpha band but not in beta/gamma band, and peaked earlier in the alpha band compared to the theta band (alpha: 184 ± 61.48-ms; theta: 237 ± 65.32-ms, <i>P</i>-value <i>P</i> < 0.01). Nodes in occipital and frontal regions had the highest eigenvector centrality throughout the word's presentation, and no significant lead-lag relationship between frontal/occipital regions and parietal/temporal regions was found, which indicates a consistent pattern in information flow. In the source space, this pattern was driven by a cluster of nodes linked to sensorimotor processing, memory, and semantic integration, with the most central regions being similar across subjects. <b>Significance:</b> These findings indicate that the brain network connectivity can be tracked via scalp EEG as reading unfolds, and EEG-retrieved networks follow highly repetitive patterns lateralized to frontal/occipital areas during reading.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10280-8.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"90\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10280-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10280-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
EEG-derived brain connectivity in theta/alpha frequency bands increases during reading of individual words.
Objective: Although extensive insights about the neural mechanisms of reading have been gained via magnetic and electrographic imaging, the temporal evolution of the brain network during sight reading remains unclear. We tested whether the temporal dynamics of the brain functional connectivity involved in sight reading can be tracked using high-density scalp EEG recordings. Approach: Twenty-eight healthy subjects were asked to read words in a rapid serial visual presentation task while recording scalp EEG, and phase locking value was used to estimate the functional connectivity between EEG channels in the theta, alpha, beta, and gamma frequency bands. The resultant networks were then tracked through time. Main results: The network's graph density gradually increases as the task unfolds, peaks 150-250-ms after the appearance of each word, and returns to resting-state values, while the shortest path length between non-adjacent functional areas decreases as the density increases, thus indicating that a progressive integration between regions can be detected at the scalp level. This pattern was independent of the word's type or position in the sentence, occurred in the theta/alpha band but not in beta/gamma band, and peaked earlier in the alpha band compared to the theta band (alpha: 184 ± 61.48-ms; theta: 237 ± 65.32-ms, P-value P < 0.01). Nodes in occipital and frontal regions had the highest eigenvector centrality throughout the word's presentation, and no significant lead-lag relationship between frontal/occipital regions and parietal/temporal regions was found, which indicates a consistent pattern in information flow. In the source space, this pattern was driven by a cluster of nodes linked to sensorimotor processing, memory, and semantic integration, with the most central regions being similar across subjects. Significance: These findings indicate that the brain network connectivity can be tracked via scalp EEG as reading unfolds, and EEG-retrieved networks follow highly repetitive patterns lateralized to frontal/occipital areas during reading.
Supplementary information: The online version contains supplementary material available at 10.1007/s11571-025-10280-8.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.