{"title":"上皮形态发生运动学关系的体内评估。","authors":"Toshinori Namba, Kaoru Sugimura, Shuji Ishihara","doi":"10.1140/epje/s10189-025-00495-2","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue growth and deformation result from the combined effects of various cellular events, including cell shape change, cell rearrangement, cell division, and cell death. Resolving and integrating these cellular events is essential for understanding the coordination of tissue-scale growth and deformation by individual cellular behaviors that are critical for morphogenesis, wound healing, and other collective cellular phenomena. For epithelial tissues composed of tightly connected cells, the texture tensor method provides a unified framework for quantifying tissue and cell strains by tracking individual cells in live imaging data. The corresponding kinematic relationships have been introduced in a hydrodynamic model that we previously reported. In this study, we quantitatively evaluated the kinematic equations proposed in the hydrodynamic model using experimental data from a growing Drosophila wing. To accomplish this, we introduced modified definitions of the texture tensor and confirmed that one of these modifications more accurately represents approximated cellular shapes without relying on ad hoc scaling factors. By utilizing the modified tensor, we demonstrated the compatibility of the strain rate tensors and the accuracy of both the kinematic and cell number density equations. These results cross-validate the modified texture analysis and the hydrodynamic model. Furthermore, the precision of the kinematic relationships achieved in this study provides a robust foundation for more advanced integration of modeling and experiment.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"31"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo assessment of kinematic relationships for epithelial morphogenesis.\",\"authors\":\"Toshinori Namba, Kaoru Sugimura, Shuji Ishihara\",\"doi\":\"10.1140/epje/s10189-025-00495-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissue growth and deformation result from the combined effects of various cellular events, including cell shape change, cell rearrangement, cell division, and cell death. Resolving and integrating these cellular events is essential for understanding the coordination of tissue-scale growth and deformation by individual cellular behaviors that are critical for morphogenesis, wound healing, and other collective cellular phenomena. For epithelial tissues composed of tightly connected cells, the texture tensor method provides a unified framework for quantifying tissue and cell strains by tracking individual cells in live imaging data. The corresponding kinematic relationships have been introduced in a hydrodynamic model that we previously reported. In this study, we quantitatively evaluated the kinematic equations proposed in the hydrodynamic model using experimental data from a growing Drosophila wing. To accomplish this, we introduced modified definitions of the texture tensor and confirmed that one of these modifications more accurately represents approximated cellular shapes without relying on ad hoc scaling factors. By utilizing the modified tensor, we demonstrated the compatibility of the strain rate tensors and the accuracy of both the kinematic and cell number density equations. These results cross-validate the modified texture analysis and the hydrodynamic model. Furthermore, the precision of the kinematic relationships achieved in this study provides a robust foundation for more advanced integration of modeling and experiment.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 6-7\",\"pages\":\"31\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1140/epje/s10189-025-00495-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1140/epje/s10189-025-00495-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In vivo assessment of kinematic relationships for epithelial morphogenesis.
Tissue growth and deformation result from the combined effects of various cellular events, including cell shape change, cell rearrangement, cell division, and cell death. Resolving and integrating these cellular events is essential for understanding the coordination of tissue-scale growth and deformation by individual cellular behaviors that are critical for morphogenesis, wound healing, and other collective cellular phenomena. For epithelial tissues composed of tightly connected cells, the texture tensor method provides a unified framework for quantifying tissue and cell strains by tracking individual cells in live imaging data. The corresponding kinematic relationships have been introduced in a hydrodynamic model that we previously reported. In this study, we quantitatively evaluated the kinematic equations proposed in the hydrodynamic model using experimental data from a growing Drosophila wing. To accomplish this, we introduced modified definitions of the texture tensor and confirmed that one of these modifications more accurately represents approximated cellular shapes without relying on ad hoc scaling factors. By utilizing the modified tensor, we demonstrated the compatibility of the strain rate tensors and the accuracy of both the kinematic and cell number density equations. These results cross-validate the modified texture analysis and the hydrodynamic model. Furthermore, the precision of the kinematic relationships achieved in this study provides a robust foundation for more advanced integration of modeling and experiment.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.