{"title":"基于fsi模型的结构设计对机械刺激水凝胶支架软骨细胞分化影响的数值研究","authors":"Pedram Azizi, Christoph Drobek, Hermann Seitz","doi":"10.1007/s10237-025-01976-1","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional (3D) hydrogel scaffolds show considerable promise for the regenerative treatment of cartilage and bone defects. Within tissue engineering, these scaffolds can be mechanically stimulated to specifically promote cartilage formation. While in vitro experiments are traditionally used to study the influence of scaffold structure on cell differentiation, in silico studies offer a complementary, cost-effective, and powerful approach. This numerical study employs a transient fluid–structure interaction (FSI) model to modify the structural design of a mechanically stimulated hydrogel scaffold for enhanced cartilage cell differentiation. The study involved two key modification steps applied to scaffolds under 5% compression. In the first step, scaffold porosity was adjusted by altering the number of strands per layer. The scaffold designed with 38% porosity, consisting of 9 strands per layer across 9 layers, improved cartilage differentiation by approximately 15%. The second step focused on scaling the selected scaffold from step 1 by adjusting the number of layers while keeping the porosity constant, aiming to optimize pore dimensions. This led to a slight improvement in cartilage differentiation of about 2.3%. The results indicate that porosity exerts a more significant influence on cell differentiation than pore size in the structured scaffolds investigated. The FSI-based model demonstrates strong potential for analyzing the impact of pore architecture on cell differentiation, although manufacturing challenges of hydrogel scaffolds may limit the practical application of these modification strategies.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"24 4","pages":"1417 - 1433"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Numerical study of the structural design influence on cartilage cell differentiation in mechanically stimulated hydrogel scaffolds using an FSI-based model\",\"authors\":\"Pedram Azizi, Christoph Drobek, Hermann Seitz\",\"doi\":\"10.1007/s10237-025-01976-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-dimensional (3D) hydrogel scaffolds show considerable promise for the regenerative treatment of cartilage and bone defects. Within tissue engineering, these scaffolds can be mechanically stimulated to specifically promote cartilage formation. While in vitro experiments are traditionally used to study the influence of scaffold structure on cell differentiation, in silico studies offer a complementary, cost-effective, and powerful approach. This numerical study employs a transient fluid–structure interaction (FSI) model to modify the structural design of a mechanically stimulated hydrogel scaffold for enhanced cartilage cell differentiation. The study involved two key modification steps applied to scaffolds under 5% compression. In the first step, scaffold porosity was adjusted by altering the number of strands per layer. The scaffold designed with 38% porosity, consisting of 9 strands per layer across 9 layers, improved cartilage differentiation by approximately 15%. The second step focused on scaling the selected scaffold from step 1 by adjusting the number of layers while keeping the porosity constant, aiming to optimize pore dimensions. This led to a slight improvement in cartilage differentiation of about 2.3%. The results indicate that porosity exerts a more significant influence on cell differentiation than pore size in the structured scaffolds investigated. The FSI-based model demonstrates strong potential for analyzing the impact of pore architecture on cell differentiation, although manufacturing challenges of hydrogel scaffolds may limit the practical application of these modification strategies.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"24 4\",\"pages\":\"1417 - 1433\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-025-01976-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-025-01976-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Numerical study of the structural design influence on cartilage cell differentiation in mechanically stimulated hydrogel scaffolds using an FSI-based model
Three-dimensional (3D) hydrogel scaffolds show considerable promise for the regenerative treatment of cartilage and bone defects. Within tissue engineering, these scaffolds can be mechanically stimulated to specifically promote cartilage formation. While in vitro experiments are traditionally used to study the influence of scaffold structure on cell differentiation, in silico studies offer a complementary, cost-effective, and powerful approach. This numerical study employs a transient fluid–structure interaction (FSI) model to modify the structural design of a mechanically stimulated hydrogel scaffold for enhanced cartilage cell differentiation. The study involved two key modification steps applied to scaffolds under 5% compression. In the first step, scaffold porosity was adjusted by altering the number of strands per layer. The scaffold designed with 38% porosity, consisting of 9 strands per layer across 9 layers, improved cartilage differentiation by approximately 15%. The second step focused on scaling the selected scaffold from step 1 by adjusting the number of layers while keeping the porosity constant, aiming to optimize pore dimensions. This led to a slight improvement in cartilage differentiation of about 2.3%. The results indicate that porosity exerts a more significant influence on cell differentiation than pore size in the structured scaffolds investigated. The FSI-based model demonstrates strong potential for analyzing the impact of pore architecture on cell differentiation, although manufacturing challenges of hydrogel scaffolds may limit the practical application of these modification strategies.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.