内置电场调节FeCo2O4/ZnCdS异质结的d波段中心,增强光催化析氢。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-15 DOI:10.1002/cssc.202500950
Shuai Wang, Yihu Ke, Fei Jin, Youji Li, Zhiliang Jin
{"title":"内置电场调节FeCo2O4/ZnCdS异质结的d波段中心,增强光催化析氢。","authors":"Shuai Wang, Yihu Ke, Fei Jin, Youji Li, Zhiliang Jin","doi":"10.1002/cssc.202500950","DOIUrl":null,"url":null,"abstract":"<p><p>Noble metal nanoparticle co-catalysts offer high photocatalytic activity but are costly and scarce, driving the search for efficient, economical alternatives. We constructed a FeCo<sub>2</sub>O<sub>4</sub>/ZnCdS composite catalyst using electrostatic self-assembly. Optimizing the FeCo<sub>2</sub>O<sub>4</sub> loading to 10 wt% achieved a remarkable hydrogen production rate of 9080 μmol g<sup>-1</sup> h<sup>-1</sup>-3.49 times higher than pristine ZnCdS and exceeding precious metal co-catalysts like Au. Kelvin probe force microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations reveal an S-scheme heterojunction forms between FeCo<sub>2</sub>O<sub>4</sub> and ZnCdS. The resulting internal electric field efficiently drives directional charge migration and significantly suppresses electron-hole recombination. DFT further shows the interface electric field shifts the d-band center, optimizing reactant molecule adsorption. This avoids catalyst deactivation from strong adsorption while overcoming the energy barrier from weak adsorption, creating an ideal moderate-strength activated state. This work deepens understanding of S-scheme mechanisms and provides a new strategy for economical photocatalytic hydrogen production.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500950"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Built-in Electric Field Regulates the d-band Center of the FeCo<sub>2</sub>O<sub>4</sub>/ZnCdS Heterojunction to Enhance Photocatalytic Hydrogen Evolution.\",\"authors\":\"Shuai Wang, Yihu Ke, Fei Jin, Youji Li, Zhiliang Jin\",\"doi\":\"10.1002/cssc.202500950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Noble metal nanoparticle co-catalysts offer high photocatalytic activity but are costly and scarce, driving the search for efficient, economical alternatives. We constructed a FeCo<sub>2</sub>O<sub>4</sub>/ZnCdS composite catalyst using electrostatic self-assembly. Optimizing the FeCo<sub>2</sub>O<sub>4</sub> loading to 10 wt% achieved a remarkable hydrogen production rate of 9080 μmol g<sup>-1</sup> h<sup>-1</sup>-3.49 times higher than pristine ZnCdS and exceeding precious metal co-catalysts like Au. Kelvin probe force microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations reveal an S-scheme heterojunction forms between FeCo<sub>2</sub>O<sub>4</sub> and ZnCdS. The resulting internal electric field efficiently drives directional charge migration and significantly suppresses electron-hole recombination. DFT further shows the interface electric field shifts the d-band center, optimizing reactant molecule adsorption. This avoids catalyst deactivation from strong adsorption while overcoming the energy barrier from weak adsorption, creating an ideal moderate-strength activated state. This work deepens understanding of S-scheme mechanisms and provides a new strategy for economical photocatalytic hydrogen production.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2500950\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500950\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500950","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

贵金属纳米颗粒因其优异的光催化活性在助催化剂领域得到了广泛的应用。然而,它的高成本和有限的资源促使人们迫切寻求有效和经济的非贵金属替代品。以FeCo2O4为原料,采用静电自组装法制备了FeCo2O4/ZnCdS复合催化剂。通过将FeCo2O4的最佳负载率精确调节至10 wt%, FeCo2O4/ ZnCdS的制氢效率高达9080 μmol·g-1·h-1。这比ZnCdS高3.49倍,明显优于Au等贵金属助催化剂。KPFM(开尔文探针力显微镜)、XPS (x射线光电子能谱)和DFT(密度泛函理论计算)表明,FeCo2O4和ZnCdS之间形成了s型异质结。这种异质结产生的内部电场有效地驱动电荷定向迁移,并显著抑制光生电子-空穴复合过程。DFT计算进一步表明,界面电场诱导的d带中心移位优化了反应物分子的吸附方式,既避免了强吸附引起的催化剂失活,又克服了弱吸附引起的反应能垒,形成了中等强度的活化态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Built-in Electric Field Regulates the d-band Center of the FeCo2O4/ZnCdS Heterojunction to Enhance Photocatalytic Hydrogen Evolution.

Noble metal nanoparticle co-catalysts offer high photocatalytic activity but are costly and scarce, driving the search for efficient, economical alternatives. We constructed a FeCo2O4/ZnCdS composite catalyst using electrostatic self-assembly. Optimizing the FeCo2O4 loading to 10 wt% achieved a remarkable hydrogen production rate of 9080 μmol g-1 h-1-3.49 times higher than pristine ZnCdS and exceeding precious metal co-catalysts like Au. Kelvin probe force microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations reveal an S-scheme heterojunction forms between FeCo2O4 and ZnCdS. The resulting internal electric field efficiently drives directional charge migration and significantly suppresses electron-hole recombination. DFT further shows the interface electric field shifts the d-band center, optimizing reactant molecule adsorption. This avoids catalyst deactivation from strong adsorption while overcoming the energy barrier from weak adsorption, creating an ideal moderate-strength activated state. This work deepens understanding of S-scheme mechanisms and provides a new strategy for economical photocatalytic hydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信