Yingji Zhao, Zhi Gao, Norman C.-R. Chen, Yusuke Asakura, Ho Ngoc Nam, Quan Manh Phung, Yunqing Kang, Mandy Hei Man Leung, Dong Jiang, Lei Fu, Lijin Huang, Toru Asahi, Yusuke Yamauchi
{"title":"超薄介孔金属-有机骨架纳米片。","authors":"Yingji Zhao, Zhi Gao, Norman C.-R. Chen, Yusuke Asakura, Ho Ngoc Nam, Quan Manh Phung, Yunqing Kang, Mandy Hei Man Leung, Dong Jiang, Lei Fu, Lijin Huang, Toru Asahi, Yusuke Yamauchi","doi":"10.1002/adma.202508105","DOIUrl":null,"url":null,"abstract":"<p>Designing 2D mesoporous metal-organic framework (MOF) nanosheets to overcome the limitations of bulk MOF counterparts, with a focus on enabling smooth mass transport, presents an attractive yet challenging endeavor. Here, a novel bottom-up interface-directed co-assembly method is presented for the synthesis of ultrathin 2D mesoporous UiO-66(Ce) nanosheets. The method utilizes an interface-directed co-assembly of amphiphilic perfluorooctanoic acid-induced lipid bilayers and spherical micelles from PS-<i>b</i>-PEO block copolymers to form unique 2D sandwich-like assemblies that guide the creation of 2D mesoporous UiO-66(Ce). The resultant 2D mesoporous UiO-66(Ce), with ≈23 nm pore diameters and a thickness that can be tuned from 3 to 150 nm, represents a substantial advancement in the application of MOFs for environmental remediation. As a model reaction, the U(VI) photoreduction benefits from the through-mesopores of its 2D morphology, which are absent in previously reported UiO-66(Ce), as they shorten the diffusion path, thereby improving mass transport and accessibility to active sites. This report demonstrates the significant role of existing mesopores in MOFs and the shape control of MOFs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 36","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202508105","citationCount":"0","resultStr":"{\"title\":\"Ultrathin Mesoporous Metal-Organic Framework Nanosheets\",\"authors\":\"Yingji Zhao, Zhi Gao, Norman C.-R. Chen, Yusuke Asakura, Ho Ngoc Nam, Quan Manh Phung, Yunqing Kang, Mandy Hei Man Leung, Dong Jiang, Lei Fu, Lijin Huang, Toru Asahi, Yusuke Yamauchi\",\"doi\":\"10.1002/adma.202508105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Designing 2D mesoporous metal-organic framework (MOF) nanosheets to overcome the limitations of bulk MOF counterparts, with a focus on enabling smooth mass transport, presents an attractive yet challenging endeavor. Here, a novel bottom-up interface-directed co-assembly method is presented for the synthesis of ultrathin 2D mesoporous UiO-66(Ce) nanosheets. The method utilizes an interface-directed co-assembly of amphiphilic perfluorooctanoic acid-induced lipid bilayers and spherical micelles from PS-<i>b</i>-PEO block copolymers to form unique 2D sandwich-like assemblies that guide the creation of 2D mesoporous UiO-66(Ce). The resultant 2D mesoporous UiO-66(Ce), with ≈23 nm pore diameters and a thickness that can be tuned from 3 to 150 nm, represents a substantial advancement in the application of MOFs for environmental remediation. As a model reaction, the U(VI) photoreduction benefits from the through-mesopores of its 2D morphology, which are absent in previously reported UiO-66(Ce), as they shorten the diffusion path, thereby improving mass transport and accessibility to active sites. This report demonstrates the significant role of existing mesopores in MOFs and the shape control of MOFs.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 36\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202508105\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202508105\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202508105","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing 2D mesoporous metal-organic framework (MOF) nanosheets to overcome the limitations of bulk MOF counterparts, with a focus on enabling smooth mass transport, presents an attractive yet challenging endeavor. Here, a novel bottom-up interface-directed co-assembly method is presented for the synthesis of ultrathin 2D mesoporous UiO-66(Ce) nanosheets. The method utilizes an interface-directed co-assembly of amphiphilic perfluorooctanoic acid-induced lipid bilayers and spherical micelles from PS-b-PEO block copolymers to form unique 2D sandwich-like assemblies that guide the creation of 2D mesoporous UiO-66(Ce). The resultant 2D mesoporous UiO-66(Ce), with ≈23 nm pore diameters and a thickness that can be tuned from 3 to 150 nm, represents a substantial advancement in the application of MOFs for environmental remediation. As a model reaction, the U(VI) photoreduction benefits from the through-mesopores of its 2D morphology, which are absent in previously reported UiO-66(Ce), as they shorten the diffusion path, thereby improving mass transport and accessibility to active sites. This report demonstrates the significant role of existing mesopores in MOFs and the shape control of MOFs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.