{"title":"磁驱动转矩感应电刺激用于毫秒级无线神经调节。","authors":"Chao-Chun Cheng, Li-Ling Chen, Guan-Jhong Tseng, Jun-Xuan Huang, Yen-Jing Ting, Po-Han Chiang","doi":"10.1002/adhm.202500805","DOIUrl":null,"url":null,"abstract":"<p>Wireless neuromodulation using nanoparticles, offering minimally invasive alternatives to conventional deep brain stimulation (DBS) while reducing the risks associated with hardware implants, has gained significant traction over the past decade. Nevertheless, ensuring millisecond-scale wireless DBS for the precise temporal control of neuronal activity remains challenging. This study reports magnetic-driven torque-induced electrical stimulation (MagTIES), a torque-based magnetoelectric neuromodulation method. By utilizing magnetic nanodiscs to generate torque under alternating magnetic fields (AMFs), the MagTIES induces a piezoelectric effect in piezoelectric nanoparticles, thereby overcoming the limitations of traditional magnetostriction-based systems. With an AMF (50 mT at ≈10 Hz), the proposed approach triggers neuronal activity both in vitro and in vivo, specifically in the deep brain region of the amygdala, within milliseconds. Furthermore, MagTIES enables the fine-tuning of amygdala brain oscillations through the precise modulation of the AMF frequency. By combining high spatial and temporal precision with minimal invasiveness, MagTIES provides an innovative approach for advancing neuroscience research with potential applications in understanding neural circuits and developing innovative therapies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 20","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333473/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic-Driven Torque-Induced Electrical Stimulation for Millisecond-Scale Wireless Neuromodulation\",\"authors\":\"Chao-Chun Cheng, Li-Ling Chen, Guan-Jhong Tseng, Jun-Xuan Huang, Yen-Jing Ting, Po-Han Chiang\",\"doi\":\"10.1002/adhm.202500805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wireless neuromodulation using nanoparticles, offering minimally invasive alternatives to conventional deep brain stimulation (DBS) while reducing the risks associated with hardware implants, has gained significant traction over the past decade. Nevertheless, ensuring millisecond-scale wireless DBS for the precise temporal control of neuronal activity remains challenging. This study reports magnetic-driven torque-induced electrical stimulation (MagTIES), a torque-based magnetoelectric neuromodulation method. By utilizing magnetic nanodiscs to generate torque under alternating magnetic fields (AMFs), the MagTIES induces a piezoelectric effect in piezoelectric nanoparticles, thereby overcoming the limitations of traditional magnetostriction-based systems. With an AMF (50 mT at ≈10 Hz), the proposed approach triggers neuronal activity both in vitro and in vivo, specifically in the deep brain region of the amygdala, within milliseconds. Furthermore, MagTIES enables the fine-tuning of amygdala brain oscillations through the precise modulation of the AMF frequency. By combining high spatial and temporal precision with minimal invasiveness, MagTIES provides an innovative approach for advancing neuroscience research with potential applications in understanding neural circuits and developing innovative therapies.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\"14 20\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202500805\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202500805","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Magnetic-Driven Torque-Induced Electrical Stimulation for Millisecond-Scale Wireless Neuromodulation
Wireless neuromodulation using nanoparticles, offering minimally invasive alternatives to conventional deep brain stimulation (DBS) while reducing the risks associated with hardware implants, has gained significant traction over the past decade. Nevertheless, ensuring millisecond-scale wireless DBS for the precise temporal control of neuronal activity remains challenging. This study reports magnetic-driven torque-induced electrical stimulation (MagTIES), a torque-based magnetoelectric neuromodulation method. By utilizing magnetic nanodiscs to generate torque under alternating magnetic fields (AMFs), the MagTIES induces a piezoelectric effect in piezoelectric nanoparticles, thereby overcoming the limitations of traditional magnetostriction-based systems. With an AMF (50 mT at ≈10 Hz), the proposed approach triggers neuronal activity both in vitro and in vivo, specifically in the deep brain region of the amygdala, within milliseconds. Furthermore, MagTIES enables the fine-tuning of amygdala brain oscillations through the precise modulation of the AMF frequency. By combining high spatial and temporal precision with minimal invasiveness, MagTIES provides an innovative approach for advancing neuroscience research with potential applications in understanding neural circuits and developing innovative therapies.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.