核酸适配体中和酶的dna触发激活原位形成可注射水凝胶。

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Connie Wen, Yixun Wang, Kyungsene Lee, Xuelin Wang, Yong Wang
{"title":"核酸适配体中和酶的dna触发激活原位形成可注射水凝胶。","authors":"Connie Wen, Yixun Wang, Kyungsene Lee, Xuelin Wang, Yong Wang","doi":"10.1039/d5nh00314h","DOIUrl":null,"url":null,"abstract":"<p><p>Injectable hydrogels have been widely studied for the embolization of vascular malformations and the control of bleeding in hemorrhages. An ideal injectable hydrogel in these applications needs to form once contacting with the blood components, which enables easy control of hydrogel formation and injectability. However, this type of injectable hydrogel has not yet been widely studied. In this work, an injectable hydrogel system was developed by using a bispecific aptamer-neutralized enzyme and a triggering DNA. The results show that the system remained in its solution or pre-gelation state in the presence of the bispecific aptamer. Upon contact with the triggering DNA, the system was transformed into a hydrogel state. <i>In vitro</i> aneurysm and endovascular embolization were further conducted, and the results showed the DNA administered out of the hydrogel system could trigger the activation of aptamer-bound enzymes for the accelerated formation of the injectable hydrogel. Therefore, this study has successfully demonstrated that a bispecific aptamer-neutralized enzyme in the pre-gelation system can be rapidly released to accelerate the formation of injectable hydrogels when the system is in contact with the blood that contains a triggering DNA.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169211/pdf/","citationCount":"0","resultStr":"{\"title\":\"DNA-triggered activation of aptamer-neutralized enzyme for <i>in situ</i> formation of injectable hydrogel.\",\"authors\":\"Connie Wen, Yixun Wang, Kyungsene Lee, Xuelin Wang, Yong Wang\",\"doi\":\"10.1039/d5nh00314h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Injectable hydrogels have been widely studied for the embolization of vascular malformations and the control of bleeding in hemorrhages. An ideal injectable hydrogel in these applications needs to form once contacting with the blood components, which enables easy control of hydrogel formation and injectability. However, this type of injectable hydrogel has not yet been widely studied. In this work, an injectable hydrogel system was developed by using a bispecific aptamer-neutralized enzyme and a triggering DNA. The results show that the system remained in its solution or pre-gelation state in the presence of the bispecific aptamer. Upon contact with the triggering DNA, the system was transformed into a hydrogel state. <i>In vitro</i> aneurysm and endovascular embolization were further conducted, and the results showed the DNA administered out of the hydrogel system could trigger the activation of aptamer-bound enzymes for the accelerated formation of the injectable hydrogel. Therefore, this study has successfully demonstrated that a bispecific aptamer-neutralized enzyme in the pre-gelation system can be rapidly released to accelerate the formation of injectable hydrogels when the system is in contact with the blood that contains a triggering DNA.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169211/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00314h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00314h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可注射水凝胶在血管畸形的栓塞和出血中的出血控制方面得到了广泛的研究。在这些应用中,理想的可注射水凝胶需要在与血液成分接触后形成,这使得水凝胶形成和可注射性易于控制。然而,这种类型的可注射水凝胶尚未得到广泛的研究。在这项工作中,利用双特异性适配体中和酶和触发DNA开发了一种可注射的水凝胶系统。结果表明,在双特异性适配体存在的情况下,体系保持溶液或预凝胶状态。与触发DNA接触后,该系统转变为水凝胶状态。进一步对体外动脉瘤和血管内栓塞进行了研究,结果表明,从水凝胶体系中给药的DNA可以触发适配体结合酶的激活,从而加速可注射水凝胶的形成。因此,本研究成功证明,当预凝胶系统与含有触发DNA的血液接触时,预凝胶系统中的双特异性适配体中和酶可以快速释放,以加速可注射水凝胶的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA-triggered activation of aptamer-neutralized enzyme for in situ formation of injectable hydrogel.

Injectable hydrogels have been widely studied for the embolization of vascular malformations and the control of bleeding in hemorrhages. An ideal injectable hydrogel in these applications needs to form once contacting with the blood components, which enables easy control of hydrogel formation and injectability. However, this type of injectable hydrogel has not yet been widely studied. In this work, an injectable hydrogel system was developed by using a bispecific aptamer-neutralized enzyme and a triggering DNA. The results show that the system remained in its solution or pre-gelation state in the presence of the bispecific aptamer. Upon contact with the triggering DNA, the system was transformed into a hydrogel state. In vitro aneurysm and endovascular embolization were further conducted, and the results showed the DNA administered out of the hydrogel system could trigger the activation of aptamer-bound enzymes for the accelerated formation of the injectable hydrogel. Therefore, this study has successfully demonstrated that a bispecific aptamer-neutralized enzyme in the pre-gelation system can be rapidly released to accelerate the formation of injectable hydrogels when the system is in contact with the blood that contains a triggering DNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信