解码化学战前体的合成途径:使用GC × GC- tofms -化学计量学混合平台对甲基膦硫代二氯化物进行高级杂质分析。

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Zixuan Zhang, Xiaogang Lu, Meng Jin, Runli Gao and Hongmei Wang
{"title":"解码化学战前体的合成途径:使用GC × GC- tofms -化学计量学混合平台对甲基膦硫代二氯化物进行高级杂质分析。","authors":"Zixuan Zhang, Xiaogang Lu, Meng Jin, Runli Gao and Hongmei Wang","doi":"10.1039/D5AY00870K","DOIUrl":null,"url":null,"abstract":"<p >The chemical identification of precursor synthesis pathways is crucial for enforcing the Chemical Weapons Convention (CWC) by facilitating the forensic tracking of organophosphorus nerve agents. This study introduces the initial systematic impurity-profiling platform for methylphosphonothioic dichloride, a critical precursor of V-series CWC-controlled substances. Our analysis identified 58 unique compounds, offering valuable insights using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry in conjunction with advanced chemometric workflows. We devised a hierarchical analytical approach: (1) unsupervised pattern recognition (HCA/PCA) revealed the inherent clustering of two primary synthetic pathways, (2) oPLS-DA modeling achieved 100% classification accuracy (<em>R</em><small><sup>2</sup></small> = 0.990) with 15 VIP-discriminating features, and (3) rigorous validation through permutation tests (<em>n</em> = 2000) and external samples (<em>n</em> = 12) demonstrated 100% prediction accuracy. Notably, traceability was established at impurity levels as low as 0.5%, exceeding the OPCW verification standards. The established impurity database, in combination with the dual-mode chemometric approach, provides a robust framework for identifying chemical warfare-related precursors.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" 25","pages":" 5160-5169"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding synthetic pathways of chemical warfare precursors: advanced impurity profiling of methylphosphonothioic dichloride using GC × GC-TOFMS-chemometrics hybrid platforms†\",\"authors\":\"Zixuan Zhang, Xiaogang Lu, Meng Jin, Runli Gao and Hongmei Wang\",\"doi\":\"10.1039/D5AY00870K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The chemical identification of precursor synthesis pathways is crucial for enforcing the Chemical Weapons Convention (CWC) by facilitating the forensic tracking of organophosphorus nerve agents. This study introduces the initial systematic impurity-profiling platform for methylphosphonothioic dichloride, a critical precursor of V-series CWC-controlled substances. Our analysis identified 58 unique compounds, offering valuable insights using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry in conjunction with advanced chemometric workflows. We devised a hierarchical analytical approach: (1) unsupervised pattern recognition (HCA/PCA) revealed the inherent clustering of two primary synthetic pathways, (2) oPLS-DA modeling achieved 100% classification accuracy (<em>R</em><small><sup>2</sup></small> = 0.990) with 15 VIP-discriminating features, and (3) rigorous validation through permutation tests (<em>n</em> = 2000) and external samples (<em>n</em> = 12) demonstrated 100% prediction accuracy. Notably, traceability was established at impurity levels as low as 0.5%, exceeding the OPCW verification standards. The established impurity database, in combination with the dual-mode chemometric approach, provides a robust framework for identifying chemical warfare-related precursors.</p>\",\"PeriodicalId\":64,\"journal\":{\"name\":\"Analytical Methods\",\"volume\":\" 25\",\"pages\":\" 5160-5169\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d5ay00870k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d5ay00870k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

前体合成途径的化学鉴定对于执行《禁止化学武器公约》至关重要,有助于对有机磷神经毒剂进行法医追踪。本研究介绍了甲基膦硫代二氯的初始系统杂质分析平台,甲基膦硫代二氯是v系列cwc控制物质的关键前体。我们的分析鉴定了58种独特的化合物,使用全面的二维气相色谱/飞行时间质谱法结合先进的化学计量工作流程提供了有价值的见解。我们设计了一种分层分析方法:(1)无监督模式识别(HCA/PCA)揭示了两种主要合成途径的固有聚类;(2)oPLS-DA模型在15个vip判别特征上达到100%的分类准确率(R2 = 0.990);(3)通过排列检验(n = 2000)和外部样本(n = 12)的严格验证,预测准确率为100%。值得注意的是,可追溯性建立在低至0.5%的杂质水平,超过了禁化武组织的核查标准。所建立的杂质数据库与双模化学计量学方法相结合,为识别化学战相关的前体提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Decoding synthetic pathways of chemical warfare precursors: advanced impurity profiling of methylphosphonothioic dichloride using GC × GC-TOFMS-chemometrics hybrid platforms†

Decoding synthetic pathways of chemical warfare precursors: advanced impurity profiling of methylphosphonothioic dichloride using GC × GC-TOFMS-chemometrics hybrid platforms†

The chemical identification of precursor synthesis pathways is crucial for enforcing the Chemical Weapons Convention (CWC) by facilitating the forensic tracking of organophosphorus nerve agents. This study introduces the initial systematic impurity-profiling platform for methylphosphonothioic dichloride, a critical precursor of V-series CWC-controlled substances. Our analysis identified 58 unique compounds, offering valuable insights using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry in conjunction with advanced chemometric workflows. We devised a hierarchical analytical approach: (1) unsupervised pattern recognition (HCA/PCA) revealed the inherent clustering of two primary synthetic pathways, (2) oPLS-DA modeling achieved 100% classification accuracy (R2 = 0.990) with 15 VIP-discriminating features, and (3) rigorous validation through permutation tests (n = 2000) and external samples (n = 12) demonstrated 100% prediction accuracy. Notably, traceability was established at impurity levels as low as 0.5%, exceeding the OPCW verification standards. The established impurity database, in combination with the dual-mode chemometric approach, provides a robust framework for identifying chemical warfare-related precursors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信