PVDF/Fe3O4纳米纤维的压电催化活性:超声频率和光源对亚甲基蓝分解的影响。

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-05-29 eCollection Date: 2025-06-10 DOI:10.1021/acsomega.5c01092
Alina Rabadanova, Daud Selimov, Rashid R Gulakhmedov, Asiyat G Magomedova, Kipkurui Ronoh, Klára Částková, Dinara Sobola, Pavel Kaspar, Abdulatip Shuaibov, Magomed G Abdurakhmanov, Murtazali K Rabadanov, Shikhgasan M Ramazanov, Farid Orudzhev
{"title":"PVDF/Fe3O4纳米纤维的压电催化活性:超声频率和光源对亚甲基蓝分解的影响。","authors":"Alina Rabadanova, Daud Selimov, Rashid R Gulakhmedov, Asiyat G Magomedova, Kipkurui Ronoh, Klára Částková, Dinara Sobola, Pavel Kaspar, Abdulatip Shuaibov, Magomed G Abdurakhmanov, Murtazali K Rabadanov, Shikhgasan M Ramazanov, Farid Orudzhev","doi":"10.1021/acsomega.5c01092","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the piezophotocatalytic (PPhC) performance of electrospun nanofibrous membranes composed of polyvinylidene fluoride (PVDF) and magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles. The composite membranes were synthesized via electrospinning, with optimized parameters to promote β-phase crystallinity and uniform fiber morphology. Structural and phase analyses by SEM, FTIR, Raman, and XPS confirmed the predominance of the electroactive β-phase (99.8%) in the composite, as well as strong interfacial interaction between Fe<sub>3</sub>O<sub>4</sub> and the PVDF matrix. The composites exhibited significantly enhanced surface hydrophilicity and piezoelectric response compared to pristine PVDF. The piezoelectric potential generation was confirmed using a flexible piezoelectric nanogenerator (PENG), where a 3 × 1 cm membrane generated output voltages up to ∼2 V under periodic mechanical deformation at 4 Hz. Photocatalytic and piezophotocatalytic degradation of methylene blue (MB) was carried out under UV and visible light at varying ultrasonic frequencies. Maximum PPhC efficiency was achieved at 40 kHz, with 93% dye degradation in 60 min and a reaction rate constant exceeding the sum of photocatalysis and piezocatalysis by 13%, indicating a pronounced synergistic effect. Reactive oxygen species trapping and fluorescence spectroscopy confirmed <sup>•</sup>OH as the dominant oxidant. H<sub>2</sub>O<sub>2</sub> productivity under PPhC reached 1700 μmol·g<sup>-1</sup>·h<sup>-1</sup> in pure water, with a light-to-chemical energy conversion efficiency of 0.26%. Additionally, experiments conducted under an alternating magnetic field (0.3 T, 1.3 Hz) demonstrated 50% MB degradation within 240 min, revealing the contribution of magnetoelectric coupling as an alternative catalytic activation mechanism. The results suggest that PVDF/Fe<sub>3</sub>O<sub>4</sub> nanocomposites are highly promising for multifunctional catalytic applications, combining piezoelectric, photo-, and magnetoelectric activation for efficient water purification and green oxidant production.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 22","pages":"23035-23048"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163643/pdf/","citationCount":"0","resultStr":"{\"title\":\"Piezophotocatalytic Activity of PVDF/Fe<sub>3</sub>O<sub>4</sub> Nanofibers: Effect of Ultrasound Frequency and Light Source on the Decomposition of Methylene Blue.\",\"authors\":\"Alina Rabadanova, Daud Selimov, Rashid R Gulakhmedov, Asiyat G Magomedova, Kipkurui Ronoh, Klára Částková, Dinara Sobola, Pavel Kaspar, Abdulatip Shuaibov, Magomed G Abdurakhmanov, Murtazali K Rabadanov, Shikhgasan M Ramazanov, Farid Orudzhev\",\"doi\":\"10.1021/acsomega.5c01092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the piezophotocatalytic (PPhC) performance of electrospun nanofibrous membranes composed of polyvinylidene fluoride (PVDF) and magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles. The composite membranes were synthesized via electrospinning, with optimized parameters to promote β-phase crystallinity and uniform fiber morphology. Structural and phase analyses by SEM, FTIR, Raman, and XPS confirmed the predominance of the electroactive β-phase (99.8%) in the composite, as well as strong interfacial interaction between Fe<sub>3</sub>O<sub>4</sub> and the PVDF matrix. The composites exhibited significantly enhanced surface hydrophilicity and piezoelectric response compared to pristine PVDF. The piezoelectric potential generation was confirmed using a flexible piezoelectric nanogenerator (PENG), where a 3 × 1 cm membrane generated output voltages up to ∼2 V under periodic mechanical deformation at 4 Hz. Photocatalytic and piezophotocatalytic degradation of methylene blue (MB) was carried out under UV and visible light at varying ultrasonic frequencies. Maximum PPhC efficiency was achieved at 40 kHz, with 93% dye degradation in 60 min and a reaction rate constant exceeding the sum of photocatalysis and piezocatalysis by 13%, indicating a pronounced synergistic effect. Reactive oxygen species trapping and fluorescence spectroscopy confirmed <sup>•</sup>OH as the dominant oxidant. H<sub>2</sub>O<sub>2</sub> productivity under PPhC reached 1700 μmol·g<sup>-1</sup>·h<sup>-1</sup> in pure water, with a light-to-chemical energy conversion efficiency of 0.26%. Additionally, experiments conducted under an alternating magnetic field (0.3 T, 1.3 Hz) demonstrated 50% MB degradation within 240 min, revealing the contribution of magnetoelectric coupling as an alternative catalytic activation mechanism. The results suggest that PVDF/Fe<sub>3</sub>O<sub>4</sub> nanocomposites are highly promising for multifunctional catalytic applications, combining piezoelectric, photo-, and magnetoelectric activation for efficient water purification and green oxidant production.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 22\",\"pages\":\"23035-23048\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.5c01092\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.5c01092","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了由聚偏氟乙烯(PVDF)和磁铁矿(Fe3O4)纳米颗粒组成的电纺丝纳米纤维膜的压电光催化(PPhC)性能。采用静电纺丝法合成了复合膜,优化了工艺参数,提高了β相结晶度和纤维形态均匀性。通过SEM、FTIR、Raman和XPS分析,证实了复合材料中电活性β相占主导地位(99.8%),并且Fe3O4与PVDF基体之间存在较强的界面相互作用。与原始PVDF相比,复合材料表现出明显增强的表面亲水性和压电响应。使用柔性压电纳米发电机(PENG)确认了压电电位的产生,其中3 × 1 cm的膜在4 Hz的周期性机械变形下产生高达2 V的输出电压。研究了不同超声频率下紫外光和可见光对亚甲基蓝(MB)的光催化和压电光催化降解。在40 kHz时,PPhC效率最高,在60 min内降解93%的染料,反应速率常数超过光催化和压电催化的总和13%,表明协同效应显著。活性氧捕获和荧光光谱证实•OH为主要氧化剂。在纯水中,PPhC下H2O2产率达到1700 μmol·g-1·h-1,光能-化学能转换效率为0.26%。此外,在交变磁场(0.3 T, 1.3 Hz)下进行的实验表明,在240分钟内,MB降解了50%,揭示了磁电耦合作为一种替代的催化活化机制的贡献。结果表明,PVDF/Fe3O4纳米复合材料具有很好的多功能催化应用前景,可以将压电、光电和磁电活化相结合,用于高效的水净化和绿色氧化剂生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piezophotocatalytic Activity of PVDF/Fe3O4 Nanofibers: Effect of Ultrasound Frequency and Light Source on the Decomposition of Methylene Blue.

This study investigates the piezophotocatalytic (PPhC) performance of electrospun nanofibrous membranes composed of polyvinylidene fluoride (PVDF) and magnetite (Fe3O4) nanoparticles. The composite membranes were synthesized via electrospinning, with optimized parameters to promote β-phase crystallinity and uniform fiber morphology. Structural and phase analyses by SEM, FTIR, Raman, and XPS confirmed the predominance of the electroactive β-phase (99.8%) in the composite, as well as strong interfacial interaction between Fe3O4 and the PVDF matrix. The composites exhibited significantly enhanced surface hydrophilicity and piezoelectric response compared to pristine PVDF. The piezoelectric potential generation was confirmed using a flexible piezoelectric nanogenerator (PENG), where a 3 × 1 cm membrane generated output voltages up to ∼2 V under periodic mechanical deformation at 4 Hz. Photocatalytic and piezophotocatalytic degradation of methylene blue (MB) was carried out under UV and visible light at varying ultrasonic frequencies. Maximum PPhC efficiency was achieved at 40 kHz, with 93% dye degradation in 60 min and a reaction rate constant exceeding the sum of photocatalysis and piezocatalysis by 13%, indicating a pronounced synergistic effect. Reactive oxygen species trapping and fluorescence spectroscopy confirmed OH as the dominant oxidant. H2O2 productivity under PPhC reached 1700 μmol·g-1·h-1 in pure water, with a light-to-chemical energy conversion efficiency of 0.26%. Additionally, experiments conducted under an alternating magnetic field (0.3 T, 1.3 Hz) demonstrated 50% MB degradation within 240 min, revealing the contribution of magnetoelectric coupling as an alternative catalytic activation mechanism. The results suggest that PVDF/Fe3O4 nanocomposites are highly promising for multifunctional catalytic applications, combining piezoelectric, photo-, and magnetoelectric activation for efficient water purification and green oxidant production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信