二维卤化物钙钛矿中的手性声子。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mike Pols*, Geert Brocks, Sofía Calero and Shuxia Tao*, 
{"title":"二维卤化物钙钛矿中的手性声子。","authors":"Mike Pols*,&nbsp;Geert Brocks,&nbsp;Sofía Calero and Shuxia Tao*,&nbsp;","doi":"10.1021/acs.nanolett.5c01708","DOIUrl":null,"url":null,"abstract":"<p >Phonons in chiral crystal structures can be circularly polarized, making them chiral. Chiral phonons carry angular momentum, which is observable in heat currents, and, via coupling to electron spin, in spin currents. Two-dimensional (2D) halide perovskites, versatile direct band gap semiconductors, can easily form chiral structures by incorporating chiral organic cations. As a result, they exhibit phenomena such as chirality-induced spin selectivity (CISS) and the spin Seebeck effect, although the underlying mechanisms remain unclear. Using on-the-fly machine-learning force fields trained against density functional theory calculations, we confirm the presence of chiral phonons, a potential key factor for these effects. Our analysis reveals that low-energy phonons, originating from the inorganic framework, primarily exhibit chirality. Under a temperature gradient, these chiral phonons generate substantial angular momentum, leading to experimentally observable effects. These findings position chiral 2D perovskites as a promising platform for exploring the interplay among phononic, electronic, spintronic, and thermal properties.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 25","pages":"10003–10009"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203639/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chiral Phonons in 2D Halide Perovskites\",\"authors\":\"Mike Pols*,&nbsp;Geert Brocks,&nbsp;Sofía Calero and Shuxia Tao*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c01708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Phonons in chiral crystal structures can be circularly polarized, making them chiral. Chiral phonons carry angular momentum, which is observable in heat currents, and, via coupling to electron spin, in spin currents. Two-dimensional (2D) halide perovskites, versatile direct band gap semiconductors, can easily form chiral structures by incorporating chiral organic cations. As a result, they exhibit phenomena such as chirality-induced spin selectivity (CISS) and the spin Seebeck effect, although the underlying mechanisms remain unclear. Using on-the-fly machine-learning force fields trained against density functional theory calculations, we confirm the presence of chiral phonons, a potential key factor for these effects. Our analysis reveals that low-energy phonons, originating from the inorganic framework, primarily exhibit chirality. Under a temperature gradient, these chiral phonons generate substantial angular momentum, leading to experimentally observable effects. These findings position chiral 2D perovskites as a promising platform for exploring the interplay among phononic, electronic, spintronic, and thermal properties.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 25\",\"pages\":\"10003–10009\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01708\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01708","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

手性晶体结构中的声子可以圆极化,使它们具有手性。手性声子携带角动量,这可以在热流中观察到,并且通过与电子自旋的耦合,在自旋流中观察到。二维卤化物钙钛矿是一种多用途的直接带隙半导体,通过结合手性有机阳离子可以很容易地形成手性结构。因此,它们表现出手性诱导自旋选择性(CISS)和自旋塞贝克效应等现象,尽管其潜在机制尚不清楚。利用基于密度泛函理论计算训练的动态机器学习力场,我们证实了手性声子的存在,这是这些效应的潜在关键因素。我们的分析表明,低能声子,起源于无机框架,主要表现为手性。在温度梯度下,这些手性声子产生大量的角动量,导致实验可观察到的效应。这些发现将手性二维钙钛矿定位为探索声子、电子、自旋电子和热性质之间相互作用的有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chiral Phonons in 2D Halide Perovskites

Chiral Phonons in 2D Halide Perovskites

Phonons in chiral crystal structures can be circularly polarized, making them chiral. Chiral phonons carry angular momentum, which is observable in heat currents, and, via coupling to electron spin, in spin currents. Two-dimensional (2D) halide perovskites, versatile direct band gap semiconductors, can easily form chiral structures by incorporating chiral organic cations. As a result, they exhibit phenomena such as chirality-induced spin selectivity (CISS) and the spin Seebeck effect, although the underlying mechanisms remain unclear. Using on-the-fly machine-learning force fields trained against density functional theory calculations, we confirm the presence of chiral phonons, a potential key factor for these effects. Our analysis reveals that low-energy phonons, originating from the inorganic framework, primarily exhibit chirality. Under a temperature gradient, these chiral phonons generate substantial angular momentum, leading to experimentally observable effects. These findings position chiral 2D perovskites as a promising platform for exploring the interplay among phononic, electronic, spintronic, and thermal properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信