Yi Zhou, Yingjie Chen, Zirong Pan, Wanzhang Li, Meimei Su, Liangliang Zhang, Zijuan Zhou, Yongqiang Fang, Tianchi Hu, Yuanpeng Huang
{"title":"结合网络药理学与实验验证探讨汤参平汤治疗糖尿病肾病的作用机制。","authors":"Yi Zhou, Yingjie Chen, Zirong Pan, Wanzhang Li, Meimei Su, Liangliang Zhang, Zijuan Zhou, Yongqiang Fang, Tianchi Hu, Yuanpeng Huang","doi":"10.1021/acsomega.5c01492","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is a severe complication of diabetes, characterized by chronic inflammation and fibrosis. Tang Shen Ping Decoction (TSPD), a traditional Chinese medicine formulation, has shown therapeutic efficacy in DKD, yet its molecular mechanisms remain to be fully elucidated. To explore the multitarget mechanisms of TSPD, this study integrated network pharmacology, transcriptomic analysis, molecular docking, and molecular dynamics simulations, followed by in vivo and in vitro validation. A total of 248 active compounds and 649 potential targets of TSPD were identified, among which network pharmacology and transcriptomic integration highlighted 21 key genes involved in DKD pathogenesis. Protein-protein interaction network analysis further identified ALB, CCL2, EGF, FN1, and PTGS2 as central targets. Molecular docking confirmed strong binding affinities between core TSPD compounds, including quercetin and kaempferol, and these targets, particularly CCL2. Molecular dynamics simulations validated the stability of these interactions, identifying CCL2 as a crucial therapeutic target. In vivo experiments demonstrated that TSPD significantly improved renal function, attenuated fibrosis, and down-regulated CCL2, NF-κB, and TGF-β1 expression in DKD rats. In vitro, TSPD effectively suppressed CCL2/NF-κB activation and reduced the secretion of inflammatory cytokines (TNF-α, IL-6, and IL-1β) in high-glucose-treated HK-2 cells. Functional analysis confirmed that CCL2 overexpression exacerbated inflammation, while its silencing enhanced the anti-inflammatory effects of TSPD. These findings reveal that TSPD exerts renoprotective effects by targeting the CCL2/NF-κB axis, offering mechanistic insights into its anti-inflammatory and antifibrotic actions and providing a theoretical foundation for its clinical application in DKD treatment.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 22","pages":"23196-23213"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163699/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating Network Pharmacology and Experimental Validation to Elucidate the Mechanisms of Tang Shen Ping Decoction in Diabetic Kidney Disease.\",\"authors\":\"Yi Zhou, Yingjie Chen, Zirong Pan, Wanzhang Li, Meimei Su, Liangliang Zhang, Zijuan Zhou, Yongqiang Fang, Tianchi Hu, Yuanpeng Huang\",\"doi\":\"10.1021/acsomega.5c01492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic kidney disease (DKD) is a severe complication of diabetes, characterized by chronic inflammation and fibrosis. Tang Shen Ping Decoction (TSPD), a traditional Chinese medicine formulation, has shown therapeutic efficacy in DKD, yet its molecular mechanisms remain to be fully elucidated. To explore the multitarget mechanisms of TSPD, this study integrated network pharmacology, transcriptomic analysis, molecular docking, and molecular dynamics simulations, followed by in vivo and in vitro validation. A total of 248 active compounds and 649 potential targets of TSPD were identified, among which network pharmacology and transcriptomic integration highlighted 21 key genes involved in DKD pathogenesis. Protein-protein interaction network analysis further identified ALB, CCL2, EGF, FN1, and PTGS2 as central targets. Molecular docking confirmed strong binding affinities between core TSPD compounds, including quercetin and kaempferol, and these targets, particularly CCL2. Molecular dynamics simulations validated the stability of these interactions, identifying CCL2 as a crucial therapeutic target. In vivo experiments demonstrated that TSPD significantly improved renal function, attenuated fibrosis, and down-regulated CCL2, NF-κB, and TGF-β1 expression in DKD rats. In vitro, TSPD effectively suppressed CCL2/NF-κB activation and reduced the secretion of inflammatory cytokines (TNF-α, IL-6, and IL-1β) in high-glucose-treated HK-2 cells. Functional analysis confirmed that CCL2 overexpression exacerbated inflammation, while its silencing enhanced the anti-inflammatory effects of TSPD. These findings reveal that TSPD exerts renoprotective effects by targeting the CCL2/NF-κB axis, offering mechanistic insights into its anti-inflammatory and antifibrotic actions and providing a theoretical foundation for its clinical application in DKD treatment.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 22\",\"pages\":\"23196-23213\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163699/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.5c01492\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.5c01492","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrating Network Pharmacology and Experimental Validation to Elucidate the Mechanisms of Tang Shen Ping Decoction in Diabetic Kidney Disease.
Diabetic kidney disease (DKD) is a severe complication of diabetes, characterized by chronic inflammation and fibrosis. Tang Shen Ping Decoction (TSPD), a traditional Chinese medicine formulation, has shown therapeutic efficacy in DKD, yet its molecular mechanisms remain to be fully elucidated. To explore the multitarget mechanisms of TSPD, this study integrated network pharmacology, transcriptomic analysis, molecular docking, and molecular dynamics simulations, followed by in vivo and in vitro validation. A total of 248 active compounds and 649 potential targets of TSPD were identified, among which network pharmacology and transcriptomic integration highlighted 21 key genes involved in DKD pathogenesis. Protein-protein interaction network analysis further identified ALB, CCL2, EGF, FN1, and PTGS2 as central targets. Molecular docking confirmed strong binding affinities between core TSPD compounds, including quercetin and kaempferol, and these targets, particularly CCL2. Molecular dynamics simulations validated the stability of these interactions, identifying CCL2 as a crucial therapeutic target. In vivo experiments demonstrated that TSPD significantly improved renal function, attenuated fibrosis, and down-regulated CCL2, NF-κB, and TGF-β1 expression in DKD rats. In vitro, TSPD effectively suppressed CCL2/NF-κB activation and reduced the secretion of inflammatory cytokines (TNF-α, IL-6, and IL-1β) in high-glucose-treated HK-2 cells. Functional analysis confirmed that CCL2 overexpression exacerbated inflammation, while its silencing enhanced the anti-inflammatory effects of TSPD. These findings reveal that TSPD exerts renoprotective effects by targeting the CCL2/NF-κB axis, offering mechanistic insights into its anti-inflammatory and antifibrotic actions and providing a theoretical foundation for its clinical application in DKD treatment.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.