一类三阶常线性微分算子的孤子解

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Tuncay Aktosun, Abdon E. Choque-Rivero, Ivan Toledo, Mehmet Unlu
{"title":"一类三阶常线性微分算子的孤子解","authors":"Tuncay Aktosun,&nbsp;Abdon E. Choque-Rivero,&nbsp;Ivan Toledo,&nbsp;Mehmet Unlu","doi":"10.1111/sapm.70057","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Explicit solutions to the related integrable nonlinear evolution equations are constructed by solving the inverse scattering problem in the reflectionless case for the third-order differential equation <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>d</mi>\n <mn>3</mn>\n </msup>\n <mi>ψ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <msup>\n <mi>x</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mi>Q</mi>\n <mspace></mspace>\n <mi>d</mi>\n <mi>ψ</mi>\n <mo>/</mo>\n <mi>d</mi>\n <mi>x</mi>\n <mo>+</mo>\n <mi>P</mi>\n <mspace></mspace>\n <mi>ψ</mi>\n <mo>=</mo>\n <msup>\n <mi>k</mi>\n <mn>3</mn>\n </msup>\n <mi>ψ</mi>\n </mrow>\n <annotation>$d^3\\psi /dx^3+Q\\,d\\psi /dx+P\\,\\psi =k^3\\psi$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$Q$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>P</mi>\n <annotation>$P$</annotation>\n </semantics></math> are the potentials in the Schwartz class and <span></span><math>\n <semantics>\n <msup>\n <mi>k</mi>\n <mn>3</mn>\n </msup>\n <annotation>$k^3$</annotation>\n </semantics></math> is the spectral parameter. The input data set used to solve the relevant inverse problem consists of the bound-state poles of a transmission coefficient and the corresponding bound-state dependency constants. Using the time-evolved dependency constants, explicit solutions to the related integrable evolution equations are obtained. In the special cases of the Sawada–Kotera equation and the modified bad Boussinesq equation, the method presented here explains the physical origin of the constants appearing in the relevant <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$\\mathbf {N}$</annotation>\n </semantics></math>-soliton solutions algebraically constructed, but without any physical insight, by the bilinear method of Hirota. </p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton Solutions Associated With a Class of Third-Order Ordinary Linear Differential Operators\",\"authors\":\"Tuncay Aktosun,&nbsp;Abdon E. Choque-Rivero,&nbsp;Ivan Toledo,&nbsp;Mehmet Unlu\",\"doi\":\"10.1111/sapm.70057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Explicit solutions to the related integrable nonlinear evolution equations are constructed by solving the inverse scattering problem in the reflectionless case for the third-order differential equation <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>d</mi>\\n <mn>3</mn>\\n </msup>\\n <mi>ψ</mi>\\n <mo>/</mo>\\n <mi>d</mi>\\n <msup>\\n <mi>x</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mi>Q</mi>\\n <mspace></mspace>\\n <mi>d</mi>\\n <mi>ψ</mi>\\n <mo>/</mo>\\n <mi>d</mi>\\n <mi>x</mi>\\n <mo>+</mo>\\n <mi>P</mi>\\n <mspace></mspace>\\n <mi>ψ</mi>\\n <mo>=</mo>\\n <msup>\\n <mi>k</mi>\\n <mn>3</mn>\\n </msup>\\n <mi>ψ</mi>\\n </mrow>\\n <annotation>$d^3\\\\psi /dx^3+Q\\\\,d\\\\psi /dx+P\\\\,\\\\psi =k^3\\\\psi$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>Q</mi>\\n <annotation>$Q$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>P</mi>\\n <annotation>$P$</annotation>\\n </semantics></math> are the potentials in the Schwartz class and <span></span><math>\\n <semantics>\\n <msup>\\n <mi>k</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$k^3$</annotation>\\n </semantics></math> is the spectral parameter. The input data set used to solve the relevant inverse problem consists of the bound-state poles of a transmission coefficient and the corresponding bound-state dependency constants. Using the time-evolved dependency constants, explicit solutions to the related integrable evolution equations are obtained. In the special cases of the Sawada–Kotera equation and the modified bad Boussinesq equation, the method presented here explains the physical origin of the constants appearing in the relevant <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$\\\\mathbf {N}$</annotation>\\n </semantics></math>-soliton solutions algebraically constructed, but without any physical insight, by the bilinear method of Hirota. </p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70057\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70057","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过求解三阶微分方程d 3 ψ / d x 3 + Q在无反射情况下的逆散射问题,构造了相关可积非线性演化方程的显式解d ψ /dx+P ψ =k 3 ψ $d^3 psi /dx^3+Q\,d\psi /dx+P\,\psi =k^3\psi$,其中Q$ Q$和P$ P$是Schwartz类中的势k $k^3$是谱参数。用于求解相关反问题的输入数据集由传输系数的束缚态极点和相应的束缚态依赖常数组成。利用时间演化相关常数,得到了相关可积演化方程的显式解。在Sawada-Kotera方程和修正bad Boussinesq方程的特殊情况下,本文提出的方法解释了相关的N $\mathbf {N}$ -孤子解中出现的常数的物理起源,这些解是用Hirota的双线性方法代数构造的,但没有任何物理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton Solutions Associated With a Class of Third-Order Ordinary Linear Differential Operators

Explicit solutions to the related integrable nonlinear evolution equations are constructed by solving the inverse scattering problem in the reflectionless case for the third-order differential equation  d 3 ψ / d x 3 + Q d ψ / d x + P ψ = k 3 ψ $d^3\psi /dx^3+Q\,d\psi /dx+P\,\psi =k^3\psi$ , where Q $Q$ and P $P$ are the potentials in the Schwartz class and k 3 $k^3$ is the spectral parameter. The input data set used to solve the relevant inverse problem consists of the bound-state poles of a transmission coefficient and the corresponding bound-state dependency constants. Using the time-evolved dependency constants, explicit solutions to the related integrable evolution equations are obtained. In the special cases of the Sawada–Kotera equation and the modified bad Boussinesq equation, the method presented here explains the physical origin of the constants appearing in the relevant N $\mathbf {N}$ -soliton solutions algebraically constructed, but without any physical insight, by the bilinear method of Hirota. 

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信