基于跨域学习的自适应结构光三维表面成像(激光光子学,19(12)/2025)

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Xinsheng Li, Shijie Feng, Wenwu Chen, Ziheng Jin, Qian Chen, Chao Zuo
{"title":"基于跨域学习的自适应结构光三维表面成像(激光光子学,19(12)/2025)","authors":"Xinsheng Li,&nbsp;Shijie Feng,&nbsp;Wenwu Chen,&nbsp;Ziheng Jin,&nbsp;Qian Chen,&nbsp;Chao Zuo","doi":"10.1002/lpor.202570047","DOIUrl":null,"url":null,"abstract":"<p><b>Enhancing Structured-Light 3D Imaging</b></p><p>A cross-domain learning framework for adaptive structured-light 3D imaging is proposed by Shijie Feng, Qian Chen, Chao Zuo, and co-workers in article number 2401609; it enhances generalization across diverse systems and environments. The method incorporates a mixture-of-experts architecture, significantly improving performance over traditional specialist and generalist DNNs, and advancing robust AI-driven optical metrology.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 12","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202570047","citationCount":"0","resultStr":"{\"title\":\"Adaptive Structured-Light 3D Surface Imaging with Cross-Domain Learning (Laser Photonics Rev. 19(12)/2025)\",\"authors\":\"Xinsheng Li,&nbsp;Shijie Feng,&nbsp;Wenwu Chen,&nbsp;Ziheng Jin,&nbsp;Qian Chen,&nbsp;Chao Zuo\",\"doi\":\"10.1002/lpor.202570047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Enhancing Structured-Light 3D Imaging</b></p><p>A cross-domain learning framework for adaptive structured-light 3D imaging is proposed by Shijie Feng, Qian Chen, Chao Zuo, and co-workers in article number 2401609; it enhances generalization across diverse systems and environments. The method incorporates a mixture-of-experts architecture, significantly improving performance over traditional specialist and generalist DNNs, and advancing robust AI-driven optical metrology.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"19 12\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202570047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202570047\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202570047","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文由冯世杰、陈茜、左超等人(论文号:2401609)提出了一种用于自适应结构光三维成像的跨域学习框架;它增强了跨不同系统和环境的泛化。该方法采用了专家混合架构,显著提高了传统专家和通才dnn的性能,并推进了强大的人工智能驱动光学计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Structured-Light 3D Surface Imaging with Cross-Domain Learning (Laser Photonics Rev. 19(12)/2025)

Enhancing Structured-Light 3D Imaging

A cross-domain learning framework for adaptive structured-light 3D imaging is proposed by Shijie Feng, Qian Chen, Chao Zuo, and co-workers in article number 2401609; it enhances generalization across diverse systems and environments. The method incorporates a mixture-of-experts architecture, significantly improving performance over traditional specialist and generalist DNNs, and advancing robust AI-driven optical metrology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信