基于物理和数据驱动模型的质子交换膜电解电池寄生电流研究

IF 2.9 Q2 ELECTROCHEMISTRY
Violeta Karyofylli, K. Ashoke Raman, Linus Hammacher, Yannik Danner, Hans Kungl, André Karl, Eva Jodat, Rüdiger-A. Eichel
{"title":"基于物理和数据驱动模型的质子交换膜电解电池寄生电流研究","authors":"Violeta Karyofylli,&nbsp;K. Ashoke Raman,&nbsp;Linus Hammacher,&nbsp;Yannik Danner,&nbsp;Hans Kungl,&nbsp;André Karl,&nbsp;Eva Jodat,&nbsp;Rüdiger-A. Eichel","doi":"10.1002/elsa.70000","DOIUrl":null,"url":null,"abstract":"<p>Proton-exchange membrane (PEM) water electrolysis is pivotal for green hydrogen production, necessitating accurate predictive models to manage their non-linearities and expedite commercial deployment. Understanding degradation mechanisms through macro-scale modeling and uncertainty quantification (UQ) is crucial for advancing this technology via efficiency enhancement and lifetime extension. This study primarily utilizes a one-dimensional physics-based model to elucidate the presence of electron transport within the PEM, another degradation phenomenon, besides gas crossover. This work also applies a machine learning (ML) algorithm, such as eXtreme Gradient Boosting (XGBoost), to model PEM electrolytic cell (PEMEC) operation based on a dataset generated from the previously mentioned physics-based model. The ML model excels in predicting the polarization behavior. Based on this surrogate model, UQ and sensitivity analysis are finally employed to enlighten the dependence of PEMECs performance and Faradaic efficiency on the effective electronic conductivity of PEM, especially when electronic pathways exist within the membrane and operating at low current densities.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"5 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70000","citationCount":"0","resultStr":"{\"title\":\"Elucidating Parasitic Currents in Proton-Exchange-Membrane Electrolytic Cells via Physics-Based and Data-Driven Modeling\",\"authors\":\"Violeta Karyofylli,&nbsp;K. Ashoke Raman,&nbsp;Linus Hammacher,&nbsp;Yannik Danner,&nbsp;Hans Kungl,&nbsp;André Karl,&nbsp;Eva Jodat,&nbsp;Rüdiger-A. Eichel\",\"doi\":\"10.1002/elsa.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proton-exchange membrane (PEM) water electrolysis is pivotal for green hydrogen production, necessitating accurate predictive models to manage their non-linearities and expedite commercial deployment. Understanding degradation mechanisms through macro-scale modeling and uncertainty quantification (UQ) is crucial for advancing this technology via efficiency enhancement and lifetime extension. This study primarily utilizes a one-dimensional physics-based model to elucidate the presence of electron transport within the PEM, another degradation phenomenon, besides gas crossover. This work also applies a machine learning (ML) algorithm, such as eXtreme Gradient Boosting (XGBoost), to model PEM electrolytic cell (PEMEC) operation based on a dataset generated from the previously mentioned physics-based model. The ML model excels in predicting the polarization behavior. Based on this surrogate model, UQ and sensitivity analysis are finally employed to enlighten the dependence of PEMECs performance and Faradaic efficiency on the effective electronic conductivity of PEM, especially when electronic pathways exist within the membrane and operating at low current densities.</p>\",\"PeriodicalId\":93746,\"journal\":{\"name\":\"Electrochemical science advances\",\"volume\":\"5 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsa.70000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜(PEM)水电解是绿色制氢的关键,需要精确的预测模型来管理其非线性并加快商业部署。通过宏观尺度建模和不确定性量化(UQ)来理解降解机制对于通过提高效率和延长使用寿命来推进该技术至关重要。本研究主要利用一维物理模型来阐明质子交换膜内电子传递的存在,这是除气体交叉外的另一种降解现象。这项工作还应用了机器学习(ML)算法,如eXtreme Gradient Boosting (XGBoost),基于前面提到的基于物理的模型生成的数据集来模拟PEM电解槽(PEMEC)的操作。ML模型在预测极化行为方面表现优异。基于该替代模型,最后利用UQ和灵敏度分析揭示了PEM性能和法拉第效率对PEM有效电子电导率的依赖关系,特别是当电子通路存在于膜内并在低电流密度下工作时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating Parasitic Currents in Proton-Exchange-Membrane Electrolytic Cells via Physics-Based and Data-Driven Modeling

Proton-exchange membrane (PEM) water electrolysis is pivotal for green hydrogen production, necessitating accurate predictive models to manage their non-linearities and expedite commercial deployment. Understanding degradation mechanisms through macro-scale modeling and uncertainty quantification (UQ) is crucial for advancing this technology via efficiency enhancement and lifetime extension. This study primarily utilizes a one-dimensional physics-based model to elucidate the presence of electron transport within the PEM, another degradation phenomenon, besides gas crossover. This work also applies a machine learning (ML) algorithm, such as eXtreme Gradient Boosting (XGBoost), to model PEM electrolytic cell (PEMEC) operation based on a dataset generated from the previously mentioned physics-based model. The ML model excels in predicting the polarization behavior. Based on this surrogate model, UQ and sensitivity analysis are finally employed to enlighten the dependence of PEMECs performance and Faradaic efficiency on the effective electronic conductivity of PEM, especially when electronic pathways exist within the membrane and operating at low current densities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信