溶剂对Ti3C2O2表面金属离子储存行为的影响

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Junjie Zeng, Kechen Li, Yongzhi Wang, Jianbo Zhang and Yang Zhou
{"title":"溶剂对Ti3C2O2表面金属离子储存行为的影响","authors":"Junjie Zeng, Kechen Li, Yongzhi Wang, Jianbo Zhang and Yang Zhou","doi":"10.1039/D5NJ01525A","DOIUrl":null,"url":null,"abstract":"<p >MXenes, particularly Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>O<small><sub>2</sub></small>, are promising anode materials for metal-ion batteries due to their layered structure, high conductivity, and tunable surface chemistry. This study employs density functional theory (DFT) and the VASPsol implicit solvation model to investigate how varying dielectric constants influence the adsorption, diffusion, and storage behavior of Li<small><sup>+</sup></small>, Na<small><sup>+</sup></small>, and K<small><sup>+</sup></small> ions on Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>O<small><sub>2</sub></small> surfaces. The results show that increasing dielectric constant weakens ion–surface interactions, reduces diffusion barriers, and enhances ion mobility. K<small><sup>+</sup></small> exhibits the lowest diffusion barrier, followed by Na<small><sup>+</sup></small> and Li<small><sup>+</sup></small>. However, very high dielectric constants diminish stable ion adsorption, particularly for Li<small><sup>+</sup></small>, thus limiting storage capacity. These findings provide valuable insights into the optimization of MXene-based anodes for high-rate metal-ion batteries.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 24","pages":" 10488-10492"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent effect on the storage behavior of metal ions on Ti3C2O2 surfaces\",\"authors\":\"Junjie Zeng, Kechen Li, Yongzhi Wang, Jianbo Zhang and Yang Zhou\",\"doi\":\"10.1039/D5NJ01525A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >MXenes, particularly Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>O<small><sub>2</sub></small>, are promising anode materials for metal-ion batteries due to their layered structure, high conductivity, and tunable surface chemistry. This study employs density functional theory (DFT) and the VASPsol implicit solvation model to investigate how varying dielectric constants influence the adsorption, diffusion, and storage behavior of Li<small><sup>+</sup></small>, Na<small><sup>+</sup></small>, and K<small><sup>+</sup></small> ions on Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>O<small><sub>2</sub></small> surfaces. The results show that increasing dielectric constant weakens ion–surface interactions, reduces diffusion barriers, and enhances ion mobility. K<small><sup>+</sup></small> exhibits the lowest diffusion barrier, followed by Na<small><sup>+</sup></small> and Li<small><sup>+</sup></small>. However, very high dielectric constants diminish stable ion adsorption, particularly for Li<small><sup>+</sup></small>, thus limiting storage capacity. These findings provide valuable insights into the optimization of MXene-based anodes for high-rate metal-ion batteries.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 24\",\"pages\":\" 10488-10492\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01525a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01525a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MXenes,特别是Ti3C2O2,由于其层状结构、高导电性和可调的表面化学性质,是很有前途的金属离子电池阳极材料。本研究采用密度泛函理论(DFT)和VASPsol隐式溶剂化模型研究了不同介电常数对Li+、Na+和K+离子在Ti3C2O2表面的吸附、扩散和储存行为的影响。结果表明,增大介电常数可减弱离子-表面相互作用,降低扩散障碍,提高离子迁移率。K+的扩散势垒最低,其次是Na+和Li+。然而,非常高的介电常数会降低稳定离子的吸附,特别是对Li+,从而限制了存储容量。这些发现为高倍率金属离子电池的mxene基阳极的优化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solvent effect on the storage behavior of metal ions on Ti3C2O2 surfaces

Solvent effect on the storage behavior of metal ions on Ti3C2O2 surfaces

MXenes, particularly Ti3C2O2, are promising anode materials for metal-ion batteries due to their layered structure, high conductivity, and tunable surface chemistry. This study employs density functional theory (DFT) and the VASPsol implicit solvation model to investigate how varying dielectric constants influence the adsorption, diffusion, and storage behavior of Li+, Na+, and K+ ions on Ti3C2O2 surfaces. The results show that increasing dielectric constant weakens ion–surface interactions, reduces diffusion barriers, and enhances ion mobility. K+ exhibits the lowest diffusion barrier, followed by Na+ and Li+. However, very high dielectric constants diminish stable ion adsorption, particularly for Li+, thus limiting storage capacity. These findings provide valuable insights into the optimization of MXene-based anodes for high-rate metal-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信