利用机器学习预测g-C3N4/CdS/ mos2基异质结构纳米复合材料的光催化性能

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Preeti Kumari, Chandni Devi, Mukesh Kumar, Surender Kumar Sharma, Ravi Pratap Singh, Kamlesh Yadav and Gaurav Kumar Yogesh
{"title":"利用机器学习预测g-C3N4/CdS/ mos2基异质结构纳米复合材料的光催化性能","authors":"Preeti Kumari, Chandni Devi, Mukesh Kumar, Surender Kumar Sharma, Ravi Pratap Singh, Kamlesh Yadav and Gaurav Kumar Yogesh","doi":"10.1039/D5NJ01380A","DOIUrl":null,"url":null,"abstract":"<p >A recent study showed that the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> supported transition-metal di-chalcogenide (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/CdS/MoS<small><sub>2</sub></small>) nanocomposite faces limitations in enabling the development of efficient photocatalysts for visible light degradation of water contaminants due to an intensive, time-consuming experimental process. In this work, we leveraged machine learning (ML) modeling to evaluate the performance of photocatalytic degradation of methylene blue (MB) using the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/CdS/MoS<small><sub>2</sub></small> heterostructure nanocomposite. Four different ML algorithms (RF, DT, SVM, and NN) have been used to develop a regression model for predicting the photocatalytic performance of the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/CdS/MoS<small><sub>2</sub></small> heterostructure nanomaterial. The manually curated dataset consists of six independent features for training and testing the models. The best-trained ML models are RF and NN, displaying the highest prediction accuracy values of <em>R</em><small><sup>2</sup></small> = 0.7014/0.6864, <em>R</em> = 0.844/0.8285, and RMSE = 4.1963/4.3002 as predictive models, suggesting 83.5% and 83.7% efficiency for photocatalytic degradation of MB under 180 minutes of sunlight irradiation. The predicted photocatalytic efficiency was validated against experimental results, demonstrating 86% degradation of MB under optimal conditions. The ML model training and testing observations align with these findings, maintaining an error margin of 5%. The trained ML model, based on a manually curated dataset of the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>-supported CdS/MoS<small><sub>2</sub></small> heterostructure, significantly reduced the resource-intensive experimental process and accurately predicted the photocatalytic efficiency of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/CdS/MoS<small><sub>2</sub></small> with high precision.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 24","pages":" 10287-10308"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging machine learning for predicting the photocatalytic performance of a g-C3N4/CdS/MoS2-based heterostructure nanocomposite†\",\"authors\":\"Preeti Kumari, Chandni Devi, Mukesh Kumar, Surender Kumar Sharma, Ravi Pratap Singh, Kamlesh Yadav and Gaurav Kumar Yogesh\",\"doi\":\"10.1039/D5NJ01380A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A recent study showed that the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> supported transition-metal di-chalcogenide (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/CdS/MoS<small><sub>2</sub></small>) nanocomposite faces limitations in enabling the development of efficient photocatalysts for visible light degradation of water contaminants due to an intensive, time-consuming experimental process. In this work, we leveraged machine learning (ML) modeling to evaluate the performance of photocatalytic degradation of methylene blue (MB) using the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/CdS/MoS<small><sub>2</sub></small> heterostructure nanocomposite. Four different ML algorithms (RF, DT, SVM, and NN) have been used to develop a regression model for predicting the photocatalytic performance of the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/CdS/MoS<small><sub>2</sub></small> heterostructure nanomaterial. The manually curated dataset consists of six independent features for training and testing the models. The best-trained ML models are RF and NN, displaying the highest prediction accuracy values of <em>R</em><small><sup>2</sup></small> = 0.7014/0.6864, <em>R</em> = 0.844/0.8285, and RMSE = 4.1963/4.3002 as predictive models, suggesting 83.5% and 83.7% efficiency for photocatalytic degradation of MB under 180 minutes of sunlight irradiation. The predicted photocatalytic efficiency was validated against experimental results, demonstrating 86% degradation of MB under optimal conditions. The ML model training and testing observations align with these findings, maintaining an error margin of 5%. The trained ML model, based on a manually curated dataset of the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>-supported CdS/MoS<small><sub>2</sub></small> heterostructure, significantly reduced the resource-intensive experimental process and accurately predicted the photocatalytic efficiency of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/CdS/MoS<small><sub>2</sub></small> with high precision.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 24\",\"pages\":\" 10287-10308\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01380a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01380a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近的一项研究表明,由于实验过程密集、耗时,g-C3N4负载的过渡金属二硫族化物(g-C3N4/CdS/MoS2)纳米复合材料在开发用于可见光降解水污染物的高效光催化剂方面面临限制。在这项工作中,我们利用机器学习(ML)建模来评估使用g-C3N4/CdS/MoS2异质结构纳米复合材料光催化降解亚甲基蓝(MB)的性能。采用四种不同的ML算法(RF、DT、SVM和NN)建立了预测g-C3N4/CdS/MoS2异质结构纳米材料光催化性能的回归模型。人工整理的数据集由六个独立的特征组成,用于训练和测试模型。训练最好的ML模型是RF和NN,预测精度最高,R2 = 0.7014/0.6864, R = 0.844/0.8285, RMSE = 4.1963/4.3002,表明180 min光照下光催化降解MB的效率为83.5%和83.7%。预测的光催化效率与实验结果进行了验证,在最佳条件下对MB的降解率为86%。机器学习模型训练和测试观察结果与这些发现一致,误差范围保持在5%。基于人工整理的g-C3N4支持的CdS/MoS2异质结构数据集,训练的ML模型显著减少了资源密集型的实验过程,并准确预测了g-C3N4/CdS/MoS2的光催化效率,精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging machine learning for predicting the photocatalytic performance of a g-C3N4/CdS/MoS2-based heterostructure nanocomposite†

Leveraging machine learning for predicting the photocatalytic performance of a g-C3N4/CdS/MoS2-based heterostructure nanocomposite†

A recent study showed that the g-C3N4 supported transition-metal di-chalcogenide (g-C3N4/CdS/MoS2) nanocomposite faces limitations in enabling the development of efficient photocatalysts for visible light degradation of water contaminants due to an intensive, time-consuming experimental process. In this work, we leveraged machine learning (ML) modeling to evaluate the performance of photocatalytic degradation of methylene blue (MB) using the g-C3N4/CdS/MoS2 heterostructure nanocomposite. Four different ML algorithms (RF, DT, SVM, and NN) have been used to develop a regression model for predicting the photocatalytic performance of the g-C3N4/CdS/MoS2 heterostructure nanomaterial. The manually curated dataset consists of six independent features for training and testing the models. The best-trained ML models are RF and NN, displaying the highest prediction accuracy values of R2 = 0.7014/0.6864, R = 0.844/0.8285, and RMSE = 4.1963/4.3002 as predictive models, suggesting 83.5% and 83.7% efficiency for photocatalytic degradation of MB under 180 minutes of sunlight irradiation. The predicted photocatalytic efficiency was validated against experimental results, demonstrating 86% degradation of MB under optimal conditions. The ML model training and testing observations align with these findings, maintaining an error margin of 5%. The trained ML model, based on a manually curated dataset of the g-C3N4-supported CdS/MoS2 heterostructure, significantly reduced the resource-intensive experimental process and accurately predicted the photocatalytic efficiency of g-C3N4/CdS/MoS2 with high precision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信