基于机器学习的GaN功率放大器时分双工瞬态响应预失真

IF 3.4 0 ENGINEERING, ELECTRICAL & ELECTRONIC
Arne Fischer-Bühner;Lauri Anttila;Alberto Brihuega;Manil Dev Gomony;Mikko Valkama
{"title":"基于机器学习的GaN功率放大器时分双工瞬态响应预失真","authors":"Arne Fischer-Bühner;Lauri Anttila;Alberto Brihuega;Manil Dev Gomony;Mikko Valkama","doi":"10.1109/LMWT.2025.3561227","DOIUrl":null,"url":null,"abstract":"The extensive use of time-division duplexing in 5G and 6G poses a challenge to the linear operation of the power amplifiers (PAs) in radio base stations. Particularly with gallium nitride (GaN) technology, the PAs can produce strong transient behavior when resuming from an idle state, which degrades the first few transmitted symbols. This article proposes a novel machine learning technique to model and compensate the PA gain transient, based on a lightweight, low-rate recurrent model. Our RF measurements at 3.6 GHz examine the joint application of transient compensation and predistortion of short-term effects and show a successful mitigation of both types of distortion.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 6","pages":"924-927"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980633","citationCount":"0","resultStr":"{\"title\":\"Predistortion of GaN Power Amplifier Transient Responses in Time-Division Duplex Using Machine Learning\",\"authors\":\"Arne Fischer-Bühner;Lauri Anttila;Alberto Brihuega;Manil Dev Gomony;Mikko Valkama\",\"doi\":\"10.1109/LMWT.2025.3561227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extensive use of time-division duplexing in 5G and 6G poses a challenge to the linear operation of the power amplifiers (PAs) in radio base stations. Particularly with gallium nitride (GaN) technology, the PAs can produce strong transient behavior when resuming from an idle state, which degrades the first few transmitted symbols. This article proposes a novel machine learning technique to model and compensate the PA gain transient, based on a lightweight, low-rate recurrent model. Our RF measurements at 3.6 GHz examine the joint application of transient compensation and predistortion of short-term effects and show a successful mitigation of both types of distortion.\",\"PeriodicalId\":73297,\"journal\":{\"name\":\"IEEE microwave and wireless technology letters\",\"volume\":\"35 6\",\"pages\":\"924-927\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980633\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE microwave and wireless technology letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980633/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10980633/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

时分双工技术在5G和6G中的广泛应用,对无线基站中功率放大器(pa)的线性运行提出了挑战。特别是氮化镓(GaN)技术,当从空闲状态恢复时,PAs可以产生强烈的瞬态行为,这会降低前几个传输符号。本文提出了一种基于轻量、低速率循环模型的新型机器学习技术来建模和补偿PA增益瞬态。我们在3.6 GHz的射频测量检查了短期效应的瞬态补偿和预失真的联合应用,并显示成功地缓解了这两种类型的失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predistortion of GaN Power Amplifier Transient Responses in Time-Division Duplex Using Machine Learning
The extensive use of time-division duplexing in 5G and 6G poses a challenge to the linear operation of the power amplifiers (PAs) in radio base stations. Particularly with gallium nitride (GaN) technology, the PAs can produce strong transient behavior when resuming from an idle state, which degrades the first few transmitted symbols. This article proposes a novel machine learning technique to model and compensate the PA gain transient, based on a lightweight, low-rate recurrent model. Our RF measurements at 3.6 GHz examine the joint application of transient compensation and predistortion of short-term effects and show a successful mitigation of both types of distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信