MG-OPT:氢集成混合可再生能源系统的智能多目标pareto优化框架和交互能量

IF 10.9 1区 工程技术 Q1 ENERGY & FUELS
Hossam A. Gabber, Omar S. Hemied
{"title":"MG-OPT:氢集成混合可再生能源系统的智能多目标pareto优化框架和交互能量","authors":"Hossam A. Gabber,&nbsp;Omar S. Hemied","doi":"10.1016/j.enconman.2025.120042","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents Microgrid Optimization (MG-OPT), an intelligent multi-objective framework for Zero-Net Emissions Hybrid Renewable Energy Systems utilizing Mixed-Integer Linear Programming and Pareto-based optimization. MG-OPT uniquely integrates photovoltaic, wind, and fuel cell sources with hydrogen storage, optimizing across four competing objectives: minimizing costs and emissions while maximizing renewable utilization and profit through transactive energy mechanisms. Simulation results across three scenarios demonstrate remarkable performance: the baseline configuration (30 kW) achieves 95 % emissions reduction with $31 daily profit; the EV-integrated system (40 kW) maintains 75 % emissions reduction with $28 daily profit; and the advanced configuration (50 kW) accomplishes complete decarbonization while generating $45 daily profit—all compared to conventional grid-only systems. Economic analysis reveals substantial long-term viability with net positive revenue ranging from $30,331 to $45,446 over six years. While hydrogen integration requires a higher initial investment, it enables complete emission elimination in advanced configurations while enhancing system flexibility and economic returns. This research provides decision-makers with optimal trade-off solutions bridging theoretical optimization and practical implementation requirements for sustainable energy systems.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"341 ","pages":"Article 120042"},"PeriodicalIF":10.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MG-OPT: intelligent multi-objective Pareto-based optimization framework and transactive energy for Hybrid Renewable Energy Systems with hydrogen integration\",\"authors\":\"Hossam A. Gabber,&nbsp;Omar S. Hemied\",\"doi\":\"10.1016/j.enconman.2025.120042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents Microgrid Optimization (MG-OPT), an intelligent multi-objective framework for Zero-Net Emissions Hybrid Renewable Energy Systems utilizing Mixed-Integer Linear Programming and Pareto-based optimization. MG-OPT uniquely integrates photovoltaic, wind, and fuel cell sources with hydrogen storage, optimizing across four competing objectives: minimizing costs and emissions while maximizing renewable utilization and profit through transactive energy mechanisms. Simulation results across three scenarios demonstrate remarkable performance: the baseline configuration (30 kW) achieves 95 % emissions reduction with $31 daily profit; the EV-integrated system (40 kW) maintains 75 % emissions reduction with $28 daily profit; and the advanced configuration (50 kW) accomplishes complete decarbonization while generating $45 daily profit—all compared to conventional grid-only systems. Economic analysis reveals substantial long-term viability with net positive revenue ranging from $30,331 to $45,446 over six years. While hydrogen integration requires a higher initial investment, it enables complete emission elimination in advanced configurations while enhancing system flexibility and economic returns. This research provides decision-makers with optimal trade-off solutions bridging theoretical optimization and practical implementation requirements for sustainable energy systems.</div></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"341 \",\"pages\":\"Article 120042\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890425005667\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425005667","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

微电网优化(MG-OPT)是一种基于混合整数线性规划和pareto优化的零净排放混合可再生能源系统的智能多目标框架。MG-OPT独特地将光伏、风能和燃料电池与氢储存结合在一起,优化了四个相互竞争的目标:通过交互能源机制最大限度地降低成本和排放,同时最大限度地提高可再生能源的利用率和利润。三种方案的模拟结果显示了卓越的性能:基准配置(30千瓦)实现了95%的减排,日利润为31美元;电动汽车集成系统(40千瓦)保持减排75%,日利润28美元;与传统的纯电网系统相比,先进的配置(50千瓦)实现了完全的脱碳,同时每天产生45美元的利润。经济分析显示,该项目具有相当的长期生存能力,6年的净收益在30,331美元至45,446美元之间。虽然氢气集成需要更高的初始投资,但它可以在高级配置中完全消除排放,同时提高系统的灵活性和经济回报。该研究为决策者提供了最优权衡方案,将理论优化与可持续能源系统的实际实施要求联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MG-OPT: intelligent multi-objective Pareto-based optimization framework and transactive energy for Hybrid Renewable Energy Systems with hydrogen integration
This paper presents Microgrid Optimization (MG-OPT), an intelligent multi-objective framework for Zero-Net Emissions Hybrid Renewable Energy Systems utilizing Mixed-Integer Linear Programming and Pareto-based optimization. MG-OPT uniquely integrates photovoltaic, wind, and fuel cell sources with hydrogen storage, optimizing across four competing objectives: minimizing costs and emissions while maximizing renewable utilization and profit through transactive energy mechanisms. Simulation results across three scenarios demonstrate remarkable performance: the baseline configuration (30 kW) achieves 95 % emissions reduction with $31 daily profit; the EV-integrated system (40 kW) maintains 75 % emissions reduction with $28 daily profit; and the advanced configuration (50 kW) accomplishes complete decarbonization while generating $45 daily profit—all compared to conventional grid-only systems. Economic analysis reveals substantial long-term viability with net positive revenue ranging from $30,331 to $45,446 over six years. While hydrogen integration requires a higher initial investment, it enables complete emission elimination in advanced configurations while enhancing system flexibility and economic returns. This research provides decision-makers with optimal trade-off solutions bridging theoretical optimization and practical implementation requirements for sustainable energy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信