二次相傅里叶变换域的高级维格纳分布和模糊函数:数学基础和实际应用

IF 1.2 3区 数学 Q1 MATHEMATICS
Aamir H. Dar, Neeraj Kumar Sharma
{"title":"二次相傅里叶变换域的高级维格纳分布和模糊函数:数学基础和实际应用","authors":"Aamir H. Dar,&nbsp;Neeraj Kumar Sharma","doi":"10.1016/j.jmaa.2025.129786","DOIUrl":null,"url":null,"abstract":"<div><div>In non-stationary signal processing, prior work has incorporated the quadratic-phase Fourier transform (QPFT) into the ambiguity function (AF) and Wigner distribution (WD) to enhance their performance. This paper introduces an advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain (AWDQ/AAFQ), extending classical WD/AF formulations. Key properties, including the Moyal formula, anti-derivative property, shift, conjugation symmetry, and marginal properties, are established. Furthermore, the proposed distributions demonstrate improved effectiveness in linear frequency-modulated (LFM) signal detection. Simulation results confirm that AWDQ/AAFQ outperforms both traditional WD/AF and existing QPFT-based WD/AF methods in detection accuracy and overall performance.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129786"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain: Mathematical foundations and practical applications\",\"authors\":\"Aamir H. Dar,&nbsp;Neeraj Kumar Sharma\",\"doi\":\"10.1016/j.jmaa.2025.129786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In non-stationary signal processing, prior work has incorporated the quadratic-phase Fourier transform (QPFT) into the ambiguity function (AF) and Wigner distribution (WD) to enhance their performance. This paper introduces an advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain (AWDQ/AAFQ), extending classical WD/AF formulations. Key properties, including the Moyal formula, anti-derivative property, shift, conjugation symmetry, and marginal properties, are established. Furthermore, the proposed distributions demonstrate improved effectiveness in linear frequency-modulated (LFM) signal detection. Simulation results confirm that AWDQ/AAFQ outperforms both traditional WD/AF and existing QPFT-based WD/AF methods in detection accuracy and overall performance.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129786\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005670\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005670","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在非平稳信号处理中,先前的工作将二次相傅立叶变换(QPFT)纳入模糊函数(AF)和维格纳分布(WD)中以提高其性能。本文介绍了二次相傅里叶变换域(AWDQ/AAFQ)的一种先进的Wigner分布和模糊函数,扩展了经典的WD/AF公式。建立了关键性质,包括Moyal公式、不定导数性质、位移、共轭对称性和边际性质。此外,所提出的分布在线性调频(LFM)信号检测中显示出更高的有效性。仿真结果表明,AWDQ/AAFQ方法在检测精度和综合性能上均优于传统WD/AF方法和现有的基于qpft的WD/AF方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain: Mathematical foundations and practical applications
In non-stationary signal processing, prior work has incorporated the quadratic-phase Fourier transform (QPFT) into the ambiguity function (AF) and Wigner distribution (WD) to enhance their performance. This paper introduces an advanced Wigner distribution and ambiguity function in the quadratic-phase Fourier transform domain (AWDQ/AAFQ), extending classical WD/AF formulations. Key properties, including the Moyal formula, anti-derivative property, shift, conjugation symmetry, and marginal properties, are established. Furthermore, the proposed distributions demonstrate improved effectiveness in linear frequency-modulated (LFM) signal detection. Simulation results confirm that AWDQ/AAFQ outperforms both traditional WD/AF and existing QPFT-based WD/AF methods in detection accuracy and overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信