有界伪凸域闭包的多项式凸性及其在稠密全纯曲线中的应用

IF 1.2 3区 数学 Q1 MATHEMATICS
Sanjoy Chatterjee , Sushil Gorai
{"title":"有界伪凸域闭包的多项式凸性及其在稠密全纯曲线中的应用","authors":"Sanjoy Chatterjee ,&nbsp;Sushil Gorai","doi":"10.1016/j.jmaa.2025.129752","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove that the closure of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-smooth bounded strongly pseudoconvex domain is polynomially convex if it is invariant under positive time flows of a holomorphic vector field that has a globally attracting fixed point inside the domain. We also provide a sufficient condition for a bounded pseudoconvex domain so that its closure is polynomially convex. We show that if a class of bounded pseudoconvex domain Ω in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> which are invariant under the positive time flow of certain complete holomorphic vector fields, then given any connected complex manifold <em>Y</em>, there exists a holomorphic map from the unit disc to the space of all holomorphic maps from Ω to <em>Y</em> whose image is dense in <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>. This also yields us the existence of a <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>-universal map for any generalized translation on Ω, which implies the hypercyclicity of certain composition operators on <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129752"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial convexity of the closure of bounded pseudoconvex domains and its applications in dense holomorphic curves\",\"authors\":\"Sanjoy Chatterjee ,&nbsp;Sushil Gorai\",\"doi\":\"10.1016/j.jmaa.2025.129752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove that the closure of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-smooth bounded strongly pseudoconvex domain is polynomially convex if it is invariant under positive time flows of a holomorphic vector field that has a globally attracting fixed point inside the domain. We also provide a sufficient condition for a bounded pseudoconvex domain so that its closure is polynomially convex. We show that if a class of bounded pseudoconvex domain Ω in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> which are invariant under the positive time flow of certain complete holomorphic vector fields, then given any connected complex manifold <em>Y</em>, there exists a holomorphic map from the unit disc to the space of all holomorphic maps from Ω to <em>Y</em> whose image is dense in <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>. This also yields us the existence of a <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>-universal map for any generalized translation on Ω, which implies the hypercyclicity of certain composition operators on <span><math><mi>O</mi><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129752\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005335\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005335","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在具有全局吸引不动点的全纯向量场的正时间流下,证明了一个c2 -光滑有界强伪凸区域的闭包是多项式凸的。我们还给出了有界伪凸域的闭包多项式凸的一个充分条件。我们证明了如果Cn中有界伪凸域Ω在某些完全全纯向量场的正时间流下是不变的,那么给定任意连通复流形Y,存在一个从单位圆盘到空间的从Ω到Y的所有全纯映射的全纯映射,其像在O(Ω,Y)中是密集的。这也为我们提供了一个O(Ω,Y)-对Ω上任何广义平移的全称映射的存在性,这意味着O(Ω,Y)上某些组合算子的超环性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial convexity of the closure of bounded pseudoconvex domains and its applications in dense holomorphic curves
In this paper, we prove that the closure of a C2-smooth bounded strongly pseudoconvex domain is polynomially convex if it is invariant under positive time flows of a holomorphic vector field that has a globally attracting fixed point inside the domain. We also provide a sufficient condition for a bounded pseudoconvex domain so that its closure is polynomially convex. We show that if a class of bounded pseudoconvex domain Ω in Cn which are invariant under the positive time flow of certain complete holomorphic vector fields, then given any connected complex manifold Y, there exists a holomorphic map from the unit disc to the space of all holomorphic maps from Ω to Y whose image is dense in O(Ω,Y). This also yields us the existence of a O(Ω,Y)-universal map for any generalized translation on Ω, which implies the hypercyclicity of certain composition operators on O(Ω,Y).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信