{"title":"通过调整和新规则导向估计潜在变量可能的因果效应","authors":"Tian-Zuo Wang , Lue Tao , Tian Qin , Zhi-Hua Zhou","doi":"10.1016/j.artint.2025.104387","DOIUrl":null,"url":null,"abstract":"<div><div>Causal effect estimation from observational data is a fundamental task in artificial intelligence and has been widely studied given known causal relations. However, in the presence of latent confounders, only a part of causal relations can be identified from observational data, characterized by a partial ancestral graph (PAG), where some causal relations are indeterminate. In such cases, the causal effect is often unidentifiable, as there could be super-exponential number of potential causal graphs consistent with the identified PAG but associated with different causal effects. In this paper, we target on <em>set determination</em> within a PAG, <em>i.e.</em>, determining the set of possible causal effects of a specified variable <em>X</em> on another variable <em>Y</em> via covariate adjustment. We develop the first set determination method that does not require enumerating any causal graphs. Furthermore, we present two novel orientation rules for incorporating structural background knowledge (BK) into a PAG, which facilitate the identification of additional causal relations given BK. Notably, we show that these rules can further enhance the efficiency of our set determination method, as certain transformed edges during the procedure can be interpreted as BK and enable the rules to reveal further causal information. Theoretically and empirically, we demonstrate that our set determination methods can yield the same results as the enumeration-based method with <em>super-exponentially less</em> computational complexity.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"347 ","pages":"Article 104387"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating possible causal effects with latent variables via adjustment and novel rule orientation\",\"authors\":\"Tian-Zuo Wang , Lue Tao , Tian Qin , Zhi-Hua Zhou\",\"doi\":\"10.1016/j.artint.2025.104387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Causal effect estimation from observational data is a fundamental task in artificial intelligence and has been widely studied given known causal relations. However, in the presence of latent confounders, only a part of causal relations can be identified from observational data, characterized by a partial ancestral graph (PAG), where some causal relations are indeterminate. In such cases, the causal effect is often unidentifiable, as there could be super-exponential number of potential causal graphs consistent with the identified PAG but associated with different causal effects. In this paper, we target on <em>set determination</em> within a PAG, <em>i.e.</em>, determining the set of possible causal effects of a specified variable <em>X</em> on another variable <em>Y</em> via covariate adjustment. We develop the first set determination method that does not require enumerating any causal graphs. Furthermore, we present two novel orientation rules for incorporating structural background knowledge (BK) into a PAG, which facilitate the identification of additional causal relations given BK. Notably, we show that these rules can further enhance the efficiency of our set determination method, as certain transformed edges during the procedure can be interpreted as BK and enable the rules to reveal further causal information. Theoretically and empirically, we demonstrate that our set determination methods can yield the same results as the enumeration-based method with <em>super-exponentially less</em> computational complexity.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"347 \",\"pages\":\"Article 104387\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225001067\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001067","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Estimating possible causal effects with latent variables via adjustment and novel rule orientation
Causal effect estimation from observational data is a fundamental task in artificial intelligence and has been widely studied given known causal relations. However, in the presence of latent confounders, only a part of causal relations can be identified from observational data, characterized by a partial ancestral graph (PAG), where some causal relations are indeterminate. In such cases, the causal effect is often unidentifiable, as there could be super-exponential number of potential causal graphs consistent with the identified PAG but associated with different causal effects. In this paper, we target on set determination within a PAG, i.e., determining the set of possible causal effects of a specified variable X on another variable Y via covariate adjustment. We develop the first set determination method that does not require enumerating any causal graphs. Furthermore, we present two novel orientation rules for incorporating structural background knowledge (BK) into a PAG, which facilitate the identification of additional causal relations given BK. Notably, we show that these rules can further enhance the efficiency of our set determination method, as certain transformed edges during the procedure can be interpreted as BK and enable the rules to reveal further causal information. Theoretically and empirically, we demonstrate that our set determination methods can yield the same results as the enumeration-based method with super-exponentially less computational complexity.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.