Ling Bai , Ziting Yang , Jie Wen , Zifeng Mai , Bin Liu , Duanyang Liu , Penghong Ci , Liyuan Liu , Yiyang Xie , Ziqi Zhou , Yali Yu , Zhongming Wei
{"title":"极化反转增强了二维MoTe2/GeSe异质结构的智能识别","authors":"Ling Bai , Ziting Yang , Jie Wen , Zifeng Mai , Bin Liu , Duanyang Liu , Penghong Ci , Liyuan Liu , Yiyang Xie , Ziqi Zhou , Yali Yu , Zhongming Wei","doi":"10.1016/j.chip.2025.100143","DOIUrl":null,"url":null,"abstract":"<div><div>Wide-spectral and polarization-sensitive photodetectors are vital for applications in imaging, communication, and intelligent sensing. Although two-dimensional (2D) materials have shown great promise in enhancing the performance of these devices, conventional methods for spectral discrimination often rely on complex designs, such as external filters or multisensor systems, increasing system cost and complexity. Developing simplified devices that integrate spectral and polarization detection remains a key challenge. Here, we demonstrated a 2D MoTe<sub>2</sub>/GeSe-based photodetector with wide-spectral photoresponse (400 to 1064 nm) and polarization sensitivity, achieving a responsivity of 1.35 A W<sup>−1</sup> and a polarization ratio of 2.23 under 808 nm illumination. The device exhibited a unique 90° polarization reversal between green (532 nm) and red (808 nm), providing a novel mechanism for spectral discrimination. First-principles calculations reveal the polarization reversal phenomenon based on the heterostructure's optical anisotropy. Furthermore, integration with a convolutional neural network enables intelligent traffic signal recognition using polarization-sensitive images. This work highlights the potential of MoTe<sub>2</sub>/GeSe heterostructures for next-generation photodetectors, offering compact, multifunctional solutions with integrated spectral and polarization discrimination capabilities.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 3","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization reversal enhanced intelligent recognition in two-dimensional MoTe2/GeSe heterostructure\",\"authors\":\"Ling Bai , Ziting Yang , Jie Wen , Zifeng Mai , Bin Liu , Duanyang Liu , Penghong Ci , Liyuan Liu , Yiyang Xie , Ziqi Zhou , Yali Yu , Zhongming Wei\",\"doi\":\"10.1016/j.chip.2025.100143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wide-spectral and polarization-sensitive photodetectors are vital for applications in imaging, communication, and intelligent sensing. Although two-dimensional (2D) materials have shown great promise in enhancing the performance of these devices, conventional methods for spectral discrimination often rely on complex designs, such as external filters or multisensor systems, increasing system cost and complexity. Developing simplified devices that integrate spectral and polarization detection remains a key challenge. Here, we demonstrated a 2D MoTe<sub>2</sub>/GeSe-based photodetector with wide-spectral photoresponse (400 to 1064 nm) and polarization sensitivity, achieving a responsivity of 1.35 A W<sup>−1</sup> and a polarization ratio of 2.23 under 808 nm illumination. The device exhibited a unique 90° polarization reversal between green (532 nm) and red (808 nm), providing a novel mechanism for spectral discrimination. First-principles calculations reveal the polarization reversal phenomenon based on the heterostructure's optical anisotropy. Furthermore, integration with a convolutional neural network enables intelligent traffic signal recognition using polarization-sensitive images. This work highlights the potential of MoTe<sub>2</sub>/GeSe heterostructures for next-generation photodetectors, offering compact, multifunctional solutions with integrated spectral and polarization discrimination capabilities.</div></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"4 3\",\"pages\":\"Article 100143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472325000176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472325000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
宽光谱和偏振敏感的光电探测器在成像、通信和智能传感领域的应用至关重要。尽管二维(2D)材料在提高这些器件的性能方面显示出巨大的希望,但传统的光谱识别方法通常依赖于复杂的设计,例如外部滤波器或多传感器系统,从而增加了系统成本和复杂性。开发集成光谱和偏振检测的简化设备仍然是一个关键挑战。在此,我们展示了一种基于MoTe2/ ges2的二维光电探测器,具有宽光谱光响应(400 ~ 1064 nm)和偏振灵敏度,在808 nm照明下实现了1.35 a W−1的响应率和2.23的偏振比。该器件在绿色(532 nm)和红色(808 nm)之间具有独特的90°偏振反转,为光谱识别提供了一种新的机制。第一性原理计算揭示了基于异质结构光学各向异性的极化反转现象。此外,与卷积神经网络的集成使使用偏振敏感图像的智能交通信号识别成为可能。这项工作强调了MoTe2/GeSe异质结构在下一代光电探测器中的潜力,它提供了紧凑、多功能的解决方案,具有集成的光谱和偏振识别能力。
Polarization reversal enhanced intelligent recognition in two-dimensional MoTe2/GeSe heterostructure
Wide-spectral and polarization-sensitive photodetectors are vital for applications in imaging, communication, and intelligent sensing. Although two-dimensional (2D) materials have shown great promise in enhancing the performance of these devices, conventional methods for spectral discrimination often rely on complex designs, such as external filters or multisensor systems, increasing system cost and complexity. Developing simplified devices that integrate spectral and polarization detection remains a key challenge. Here, we demonstrated a 2D MoTe2/GeSe-based photodetector with wide-spectral photoresponse (400 to 1064 nm) and polarization sensitivity, achieving a responsivity of 1.35 A W−1 and a polarization ratio of 2.23 under 808 nm illumination. The device exhibited a unique 90° polarization reversal between green (532 nm) and red (808 nm), providing a novel mechanism for spectral discrimination. First-principles calculations reveal the polarization reversal phenomenon based on the heterostructure's optical anisotropy. Furthermore, integration with a convolutional neural network enables intelligent traffic signal recognition using polarization-sensitive images. This work highlights the potential of MoTe2/GeSe heterostructures for next-generation photodetectors, offering compact, multifunctional solutions with integrated spectral and polarization discrimination capabilities.