{"title":"脂质组学和转录组学的结合为研究李树根系叶片水分亏缺对脂质代谢的影响提供了新的思路","authors":"Patricio Olmedo , Gerardo Núñez-Lillo , Guillermo Toro , Ismael Opazo , Ariel Salvatierra , Claudio Meneses , Romina Pedreschi , Paula Pimentel","doi":"10.1016/j.envexpbot.2025.106185","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanisms underlying the role of lipids in the response to water deficit in <em>Prunus</em> species have not yet been elucidated. To investigate these, a drought-tolerant rootstock (R40) and a drought-sensitive rootstock (R20) were exposed to well-watered (WW) and water deficit (WD) conditions. We combined physiological, lipidomics, and transcriptomics analyses to elucidate lipid dynamics in rootstock leaves and roots when coping drought. Data showed that R40 genotype possessed a higher stomatal conductance and photosynthetic rate under WD conditions. Lipidomic profiling indicated that most of differences were found in leaves between both genotypes. Under WD conditions, R40 genotype showed a higher number of lipids accumulated, such as ceramides, unsaturated fatty acids, and triacylglycerols. Also, when comparing WW and WD conditions, we observed that drought induced major changes in the R20 genotype. Interestingly, WD reduced the number of accumulated compounds, suggesting a lipid remodeling associated with degradation. Transcriptomic analysis of lipid-related genes showed that the R20 genotype were more responsive to WD, decreasing the expression of these transcripts. A decrease in fatty acid biosynthesis and desaturation was induced in the R20 genotype under WD, while the R40 genotype showed an increased expression of genes associated mainly with biosynthesis of fatty acids and triacylglycerol.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"237 ","pages":"Article 106185"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of lipidomics and transcriptomics provides new insights into lipid metabolism in response to water deficit in Prunus spp. rootstock leaves\",\"authors\":\"Patricio Olmedo , Gerardo Núñez-Lillo , Guillermo Toro , Ismael Opazo , Ariel Salvatierra , Claudio Meneses , Romina Pedreschi , Paula Pimentel\",\"doi\":\"10.1016/j.envexpbot.2025.106185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanisms underlying the role of lipids in the response to water deficit in <em>Prunus</em> species have not yet been elucidated. To investigate these, a drought-tolerant rootstock (R40) and a drought-sensitive rootstock (R20) were exposed to well-watered (WW) and water deficit (WD) conditions. We combined physiological, lipidomics, and transcriptomics analyses to elucidate lipid dynamics in rootstock leaves and roots when coping drought. Data showed that R40 genotype possessed a higher stomatal conductance and photosynthetic rate under WD conditions. Lipidomic profiling indicated that most of differences were found in leaves between both genotypes. Under WD conditions, R40 genotype showed a higher number of lipids accumulated, such as ceramides, unsaturated fatty acids, and triacylglycerols. Also, when comparing WW and WD conditions, we observed that drought induced major changes in the R20 genotype. Interestingly, WD reduced the number of accumulated compounds, suggesting a lipid remodeling associated with degradation. Transcriptomic analysis of lipid-related genes showed that the R20 genotype were more responsive to WD, decreasing the expression of these transcripts. A decrease in fatty acid biosynthesis and desaturation was induced in the R20 genotype under WD, while the R40 genotype showed an increased expression of genes associated mainly with biosynthesis of fatty acids and triacylglycerol.</div></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":\"237 \",\"pages\":\"Article 106185\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847225001029\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225001029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Integration of lipidomics and transcriptomics provides new insights into lipid metabolism in response to water deficit in Prunus spp. rootstock leaves
The mechanisms underlying the role of lipids in the response to water deficit in Prunus species have not yet been elucidated. To investigate these, a drought-tolerant rootstock (R40) and a drought-sensitive rootstock (R20) were exposed to well-watered (WW) and water deficit (WD) conditions. We combined physiological, lipidomics, and transcriptomics analyses to elucidate lipid dynamics in rootstock leaves and roots when coping drought. Data showed that R40 genotype possessed a higher stomatal conductance and photosynthetic rate under WD conditions. Lipidomic profiling indicated that most of differences were found in leaves between both genotypes. Under WD conditions, R40 genotype showed a higher number of lipids accumulated, such as ceramides, unsaturated fatty acids, and triacylglycerols. Also, when comparing WW and WD conditions, we observed that drought induced major changes in the R20 genotype. Interestingly, WD reduced the number of accumulated compounds, suggesting a lipid remodeling associated with degradation. Transcriptomic analysis of lipid-related genes showed that the R20 genotype were more responsive to WD, decreasing the expression of these transcripts. A decrease in fatty acid biosynthesis and desaturation was induced in the R20 genotype under WD, while the R40 genotype showed an increased expression of genes associated mainly with biosynthesis of fatty acids and triacylglycerol.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.