爆轰细胞结构分析的计算机视觉方法

IF 5 Q2 ENERGY & FUELS
Daniel Jalontzki , Alon Zussman , Sumedh Pendurkar , Guni Sharon , Yoram Kozak
{"title":"爆轰细胞结构分析的计算机视觉方法","authors":"Daniel Jalontzki ,&nbsp;Alon Zussman ,&nbsp;Sumedh Pendurkar ,&nbsp;Guni Sharon ,&nbsp;Yoram Kozak","doi":"10.1016/j.jaecs.2025.100340","DOIUrl":null,"url":null,"abstract":"<div><div>In the current study, we present a novel computer-vision-based method for automated detection, measurement, and statistical analysis of detonation cellular structure images. The new approach consists of four primary steps: (1) image preprocessing, (2) cell contour detection, (3) parameter optimization, and (4) statistical analysis. First, the cell size measurements from the proposed approach are extensively validated against other measurement methods for numerical soot foils. We demonstrate that the computer vision approach can measure the average cell dimensions with a maximum relative error of 30% for images with a very wide range of cell regularity levels and resolutions. For high-resolution regular and irregular patterned numerical soot foil images, the maximum relative errors decrease to 8% and 17%, respectively. Moreover, cell distribution histogram analysis is carried out for cases with irregular cellular structures. We show that the suggested method can capture the correct cell size distributions with reasonable accuracy in comparison with other measurement methods. Finally, we demonstrate the new computer vision approach capability to automatically analyze high-quality experimentally-derived detonation cellular structure images.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"23 ","pages":"Article 100340"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computer vision approach for analysis of detonation cellular structures\",\"authors\":\"Daniel Jalontzki ,&nbsp;Alon Zussman ,&nbsp;Sumedh Pendurkar ,&nbsp;Guni Sharon ,&nbsp;Yoram Kozak\",\"doi\":\"10.1016/j.jaecs.2025.100340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the current study, we present a novel computer-vision-based method for automated detection, measurement, and statistical analysis of detonation cellular structure images. The new approach consists of four primary steps: (1) image preprocessing, (2) cell contour detection, (3) parameter optimization, and (4) statistical analysis. First, the cell size measurements from the proposed approach are extensively validated against other measurement methods for numerical soot foils. We demonstrate that the computer vision approach can measure the average cell dimensions with a maximum relative error of 30% for images with a very wide range of cell regularity levels and resolutions. For high-resolution regular and irregular patterned numerical soot foil images, the maximum relative errors decrease to 8% and 17%, respectively. Moreover, cell distribution histogram analysis is carried out for cases with irregular cellular structures. We show that the suggested method can capture the correct cell size distributions with reasonable accuracy in comparison with other measurement methods. Finally, we demonstrate the new computer vision approach capability to automatically analyze high-quality experimentally-derived detonation cellular structure images.</div></div>\",\"PeriodicalId\":100104,\"journal\":{\"name\":\"Applications in Energy and Combustion Science\",\"volume\":\"23 \",\"pages\":\"Article 100340\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Energy and Combustion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666352X25000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X25000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在目前的研究中,我们提出了一种新的基于计算机视觉的方法,用于爆炸细胞结构图像的自动检测,测量和统计分析。该方法包括四个主要步骤:(1)图像预处理,(2)细胞轮廓检测,(3)参数优化,(4)统计分析。首先,该方法的电池尺寸测量与其他数值烟灰箔测量方法进行了广泛的验证。我们证明,计算机视觉方法可以测量平均细胞尺寸,最大相对误差为30%,具有非常广泛的细胞规则水平和分辨率的图像。对于高分辨率规则型和不规则型数值烟灰箔图像,最大相对误差分别减小到8%和17%。对细胞结构不规则的情况进行细胞分布直方图分析。结果表明,与其他测量方法相比,所提出的方法能够以合理的精度捕获正确的细胞大小分布。最后,我们展示了新的计算机视觉方法能够自动分析高质量的实验衍生爆炸细胞结构图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A computer vision approach for analysis of detonation cellular structures
In the current study, we present a novel computer-vision-based method for automated detection, measurement, and statistical analysis of detonation cellular structure images. The new approach consists of four primary steps: (1) image preprocessing, (2) cell contour detection, (3) parameter optimization, and (4) statistical analysis. First, the cell size measurements from the proposed approach are extensively validated against other measurement methods for numerical soot foils. We demonstrate that the computer vision approach can measure the average cell dimensions with a maximum relative error of 30% for images with a very wide range of cell regularity levels and resolutions. For high-resolution regular and irregular patterned numerical soot foil images, the maximum relative errors decrease to 8% and 17%, respectively. Moreover, cell distribution histogram analysis is carried out for cases with irregular cellular structures. We show that the suggested method can capture the correct cell size distributions with reasonable accuracy in comparison with other measurement methods. Finally, we demonstrate the new computer vision approach capability to automatically analyze high-quality experimentally-derived detonation cellular structure images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信