主动学习驱动的尖晶石太阳能电池多属性反设计

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Hange Wang , Hongyu Liu , Xiaolin Liu , Lin Peng , Jiang Wu , Jia Lin
{"title":"主动学习驱动的尖晶石太阳能电池多属性反设计","authors":"Hange Wang ,&nbsp;Hongyu Liu ,&nbsp;Xiaolin Liu ,&nbsp;Lin Peng ,&nbsp;Jiang Wu ,&nbsp;Jia Lin","doi":"10.1016/j.solener.2025.113703","DOIUrl":null,"url":null,"abstract":"<div><div>Spinel materials offer promising potential for solar cell applications due to their highly tunable compositions and unique structures. However, developing efficient and stable spinel solar cells is hindered by data scarcity and the challenge of meeting multi-property requirements through traditional experimental and data-mining approaches. To address these limitations, we developed a comprehensive multi-property inverse design framework that integrates active learning to mitigate data scarcity and inverse design to efficiently identify optimal spinel compositions using the most informative data points. Within this framework, we applied a Multi-Task Gradient Boosting Machine model, which simultaneously predicts critical properties—bandgap values, bandgap type, and stability—achieving Area Under Curve scores of 0.86, 0.91, and 0.86, respectively. Leveraging this approach, we systematically explored over 10<sup>13</sup> compositional combinations and identified 168 spinel materials<!--> <!-->that satisfy stringent criteria for high-performance solar cells. By employing interpretable machine learning techniques, we further analyzed the structure–property relationships of these materials, yielding actionable insights for targeted material design. This work not only accelerates the discovery of advanced spinel-based solar cells but also establishes a versatile strategy applicable to the design of other functional materials.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113703"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active learning driven multi-property inverse design of spinel solar cells\",\"authors\":\"Hange Wang ,&nbsp;Hongyu Liu ,&nbsp;Xiaolin Liu ,&nbsp;Lin Peng ,&nbsp;Jiang Wu ,&nbsp;Jia Lin\",\"doi\":\"10.1016/j.solener.2025.113703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spinel materials offer promising potential for solar cell applications due to their highly tunable compositions and unique structures. However, developing efficient and stable spinel solar cells is hindered by data scarcity and the challenge of meeting multi-property requirements through traditional experimental and data-mining approaches. To address these limitations, we developed a comprehensive multi-property inverse design framework that integrates active learning to mitigate data scarcity and inverse design to efficiently identify optimal spinel compositions using the most informative data points. Within this framework, we applied a Multi-Task Gradient Boosting Machine model, which simultaneously predicts critical properties—bandgap values, bandgap type, and stability—achieving Area Under Curve scores of 0.86, 0.91, and 0.86, respectively. Leveraging this approach, we systematically explored over 10<sup>13</sup> compositional combinations and identified 168 spinel materials<!--> <!-->that satisfy stringent criteria for high-performance solar cells. By employing interpretable machine learning techniques, we further analyzed the structure–property relationships of these materials, yielding actionable insights for targeted material design. This work not only accelerates the discovery of advanced spinel-based solar cells but also establishes a versatile strategy applicable to the design of other functional materials.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"299 \",\"pages\":\"Article 113703\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25004669\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25004669","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

尖晶石材料由于其高度可调的成分和独特的结构,在太阳能电池应用中具有很大的潜力。然而,开发高效稳定的尖晶石太阳能电池受到数据稀缺和传统实验和数据挖掘方法难以满足多属性要求的阻碍。为了解决这些限制,我们开发了一个综合的多属性反设计框架,该框架集成了主动学习以减轻数据稀缺性和反设计,以使用最具信息量的数据点有效地识别最佳尖晶石成分。在这个框架内,我们应用了一个多任务梯度增强机模型,该模型同时预测了关键属性——带隙值、带隙类型和稳定性——曲线下面积得分分别为0.86、0.91和0.86。利用这种方法,我们系统地探索了超过1013种成分组合,并确定了168种满足高性能太阳能电池严格标准的尖晶石材料。通过采用可解释的机器学习技术,我们进一步分析了这些材料的结构-性质关系,为目标材料设计提供了可操作的见解。这项工作不仅加速了先进尖晶石基太阳能电池的发现,而且建立了一种适用于其他功能材料设计的通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active learning driven multi-property inverse design of spinel solar cells
Spinel materials offer promising potential for solar cell applications due to their highly tunable compositions and unique structures. However, developing efficient and stable spinel solar cells is hindered by data scarcity and the challenge of meeting multi-property requirements through traditional experimental and data-mining approaches. To address these limitations, we developed a comprehensive multi-property inverse design framework that integrates active learning to mitigate data scarcity and inverse design to efficiently identify optimal spinel compositions using the most informative data points. Within this framework, we applied a Multi-Task Gradient Boosting Machine model, which simultaneously predicts critical properties—bandgap values, bandgap type, and stability—achieving Area Under Curve scores of 0.86, 0.91, and 0.86, respectively. Leveraging this approach, we systematically explored over 1013 compositional combinations and identified 168 spinel materials that satisfy stringent criteria for high-performance solar cells. By employing interpretable machine learning techniques, we further analyzed the structure–property relationships of these materials, yielding actionable insights for targeted material design. This work not only accelerates the discovery of advanced spinel-based solar cells but also establishes a versatile strategy applicable to the design of other functional materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信