在微生物电化学电池中将氨转化为一氧化二氮

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sergio J. Ponce-Jahen , Victoria Sibaja-Zepeda , Edgardo I. Valenzuela , Edson B. Estrada-Arriaga , J. Rene Rangel-Mendez , Norma-A. Macías-Ruvalcaba , German Buitron , Bibiana Cercado , Francisco J. Cervantes
{"title":"在微生物电化学电池中将氨转化为一氧化二氮","authors":"Sergio J. Ponce-Jahen ,&nbsp;Victoria Sibaja-Zepeda ,&nbsp;Edgardo I. Valenzuela ,&nbsp;Edson B. Estrada-Arriaga ,&nbsp;J. Rene Rangel-Mendez ,&nbsp;Norma-A. Macías-Ruvalcaba ,&nbsp;German Buitron ,&nbsp;Bibiana Cercado ,&nbsp;Francisco J. Cervantes","doi":"10.1016/j.bioelechem.2025.109033","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonium (NH<sub>4</sub><sup>+</sup>) is a major pollutant in wastewater, and its removal using conventional methods is often energy-intensive and costly. This proof-of-concept study investigates microbial electrochemical cells (MECs) as a sustainable alternative for NH<sub>4</sub><sup>+</sup> removal and nitrous oxide (N<sub>2</sub>O) recovery. The study focuses on partial nitrification and partial denitrification processes occurring in MECs, emphasizing the electrochemical and microbial mechanisms responsible for NH<sub>4</sub><sup>+</sup> conversion. Using <sup>15</sup>NH<sub>4</sub><sup>+</sup> tracer analysis, the study demonstrates a 76 % conversion of NH<sub>4</sub><sup>+</sup> to N<sub>2</sub>O, driven by biofilms containing denitrifying microorganisms, such as <em>Simpliscispira</em> and <em>Thiobacillus</em>, and as well as planktonic species like <em>Phycisphaerae, Anaerobacterium</em>, <em>Rikenellaceae</em>, and <em>Synergistaceae</em>. MECs exhibited high energy efficiency, requiring only 1.64 kWh/kg of N-NH<sub>4</sub><sup>+</sup> removed, a value significantly lower than conventional methods. These findings underscore the potential of MECs as a promising technology for sustainable nitrogen management, demonstrating both nitrogen removal and N<sub>2</sub>O valorization for industrial application. Further optimization of microbial communities and operational parameters is needed to maximize process efficiency and scalability.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"166 ","pages":"Article 109033"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of ammonium to nitrous oxide in a microbial electrochemical cell\",\"authors\":\"Sergio J. Ponce-Jahen ,&nbsp;Victoria Sibaja-Zepeda ,&nbsp;Edgardo I. Valenzuela ,&nbsp;Edson B. Estrada-Arriaga ,&nbsp;J. Rene Rangel-Mendez ,&nbsp;Norma-A. Macías-Ruvalcaba ,&nbsp;German Buitron ,&nbsp;Bibiana Cercado ,&nbsp;Francisco J. Cervantes\",\"doi\":\"10.1016/j.bioelechem.2025.109033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonium (NH<sub>4</sub><sup>+</sup>) is a major pollutant in wastewater, and its removal using conventional methods is often energy-intensive and costly. This proof-of-concept study investigates microbial electrochemical cells (MECs) as a sustainable alternative for NH<sub>4</sub><sup>+</sup> removal and nitrous oxide (N<sub>2</sub>O) recovery. The study focuses on partial nitrification and partial denitrification processes occurring in MECs, emphasizing the electrochemical and microbial mechanisms responsible for NH<sub>4</sub><sup>+</sup> conversion. Using <sup>15</sup>NH<sub>4</sub><sup>+</sup> tracer analysis, the study demonstrates a 76 % conversion of NH<sub>4</sub><sup>+</sup> to N<sub>2</sub>O, driven by biofilms containing denitrifying microorganisms, such as <em>Simpliscispira</em> and <em>Thiobacillus</em>, and as well as planktonic species like <em>Phycisphaerae, Anaerobacterium</em>, <em>Rikenellaceae</em>, and <em>Synergistaceae</em>. MECs exhibited high energy efficiency, requiring only 1.64 kWh/kg of N-NH<sub>4</sub><sup>+</sup> removed, a value significantly lower than conventional methods. These findings underscore the potential of MECs as a promising technology for sustainable nitrogen management, demonstrating both nitrogen removal and N<sub>2</sub>O valorization for industrial application. Further optimization of microbial communities and operational parameters is needed to maximize process efficiency and scalability.</div></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"166 \",\"pages\":\"Article 109033\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539425001367\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425001367","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铵(NH4+)是废水中的主要污染物,使用常规方法去除它往往是能源密集型和昂贵的。这项概念验证研究探讨了微生物电化学电池(MECs)作为NH4+去除和一氧化二氮(N2O)回收的可持续替代品。本研究重点研究了MECs中发生的部分硝化和部分反硝化过程,重点研究了NH4+转化的电化学和微生物机制。利用15NH4+示踪分析,该研究表明,在含有反硝化微生物(如Simpliscispira和Thiobacillus)以及浮游物种(如physcisphaerae, anaerobobacterae, Rikenellaceae和Synergistaceae)的生物膜的驱动下,NH4+转化为N2O的转化率为76%。mec具有较高的能源效率,仅需要1.64 kWh/kg N-NH4+,显著低于传统方法。这些发现强调了mec作为可持续氮管理技术的潜力,展示了氮去除和N2O增值的工业应用。需要进一步优化微生物群落和操作参数,以最大限度地提高工艺效率和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conversion of ammonium to nitrous oxide in a microbial electrochemical cell
Ammonium (NH4+) is a major pollutant in wastewater, and its removal using conventional methods is often energy-intensive and costly. This proof-of-concept study investigates microbial electrochemical cells (MECs) as a sustainable alternative for NH4+ removal and nitrous oxide (N2O) recovery. The study focuses on partial nitrification and partial denitrification processes occurring in MECs, emphasizing the electrochemical and microbial mechanisms responsible for NH4+ conversion. Using 15NH4+ tracer analysis, the study demonstrates a 76 % conversion of NH4+ to N2O, driven by biofilms containing denitrifying microorganisms, such as Simpliscispira and Thiobacillus, and as well as planktonic species like Phycisphaerae, Anaerobacterium, Rikenellaceae, and Synergistaceae. MECs exhibited high energy efficiency, requiring only 1.64 kWh/kg of N-NH4+ removed, a value significantly lower than conventional methods. These findings underscore the potential of MECs as a promising technology for sustainable nitrogen management, demonstrating both nitrogen removal and N2O valorization for industrial application. Further optimization of microbial communities and operational parameters is needed to maximize process efficiency and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信