液晶聚合物自洽场理论的高精度高效数值算法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Zhijuan He , Kai Jiang , Liwei Tan , Xin Wang
{"title":"液晶聚合物自洽场理论的高精度高效数值算法","authors":"Zhijuan He ,&nbsp;Kai Jiang ,&nbsp;Liwei Tan ,&nbsp;Xin Wang","doi":"10.1016/j.camwa.2025.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Self-consistent field theory (SCFT) is one of the most widely-used frameworks in studying the equilibrium phase behavior of inhomogeneous polymers. For liquid-crystalline polymeric systems, the primary numerical challenges in solving SCFT involve efficiently solving a large number of 6-dimensional (6D, 3D space + 2D orientation + 1D contour) partial differential equations (PDEs), accurately determining subtle energy differences between self-assembled structures, and developing effective iterative methods for nonlinear SCFT iterations. To address these challenges, this work introduces a suite of high-order and efficient numerical methods tailored to SCFT of liquid-crystalline polymers. These methods include various advanced PDE solvers, an improved Anderson iteration algorithm to accelerate SCFT calculations, and an optimization technique for adjusting the computational domain during SCFT iterations. Extensive numerical tests demonstrate the efficiency of the proposed methods. Based on these algorithms, we further explore the self-assembly behavior of liquid-crystalline polymers through 4D, 5D, and 6D simulations, uncovering intricate 3D spatial structures.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"194 ","pages":"Pages 31-52"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-accurate and efficient numerical algorithms for the self-consistent field theory of liquid-crystalline polymers\",\"authors\":\"Zhijuan He ,&nbsp;Kai Jiang ,&nbsp;Liwei Tan ,&nbsp;Xin Wang\",\"doi\":\"10.1016/j.camwa.2025.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Self-consistent field theory (SCFT) is one of the most widely-used frameworks in studying the equilibrium phase behavior of inhomogeneous polymers. For liquid-crystalline polymeric systems, the primary numerical challenges in solving SCFT involve efficiently solving a large number of 6-dimensional (6D, 3D space + 2D orientation + 1D contour) partial differential equations (PDEs), accurately determining subtle energy differences between self-assembled structures, and developing effective iterative methods for nonlinear SCFT iterations. To address these challenges, this work introduces a suite of high-order and efficient numerical methods tailored to SCFT of liquid-crystalline polymers. These methods include various advanced PDE solvers, an improved Anderson iteration algorithm to accelerate SCFT calculations, and an optimization technique for adjusting the computational domain during SCFT iterations. Extensive numerical tests demonstrate the efficiency of the proposed methods. Based on these algorithms, we further explore the self-assembly behavior of liquid-crystalline polymers through 4D, 5D, and 6D simulations, uncovering intricate 3D spatial structures.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"194 \",\"pages\":\"Pages 31-52\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125002500\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002500","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

自洽场理论(SCFT)是研究非均相聚合物平衡相行为最常用的框架之一。对于液晶聚合物体系,求解SCFT的主要数值挑战包括高效求解大量6维(6D, 3D空间+ 2D方向+ 1D轮廓)偏微分方程(PDEs),准确确定自组装结构之间的细微能量差,以及开发非线性SCFT迭代的有效迭代方法。为了解决这些挑战,本工作引入了一套针对液晶聚合物SCFT的高阶高效数值方法。这些方法包括各种先进的PDE求解器,改进的Anderson迭代算法以加速SCFT计算,以及在SCFT迭代期间调整计算域的优化技术。大量的数值试验证明了所提方法的有效性。基于这些算法,我们通过4D、5D和6D模拟进一步探索了液晶聚合物的自组装行为,揭示了复杂的3D空间结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-accurate and efficient numerical algorithms for the self-consistent field theory of liquid-crystalline polymers
Self-consistent field theory (SCFT) is one of the most widely-used frameworks in studying the equilibrium phase behavior of inhomogeneous polymers. For liquid-crystalline polymeric systems, the primary numerical challenges in solving SCFT involve efficiently solving a large number of 6-dimensional (6D, 3D space + 2D orientation + 1D contour) partial differential equations (PDEs), accurately determining subtle energy differences between self-assembled structures, and developing effective iterative methods for nonlinear SCFT iterations. To address these challenges, this work introduces a suite of high-order and efficient numerical methods tailored to SCFT of liquid-crystalline polymers. These methods include various advanced PDE solvers, an improved Anderson iteration algorithm to accelerate SCFT calculations, and an optimization technique for adjusting the computational domain during SCFT iterations. Extensive numerical tests demonstrate the efficiency of the proposed methods. Based on these algorithms, we further explore the self-assembly behavior of liquid-crystalline polymers through 4D, 5D, and 6D simulations, uncovering intricate 3D spatial structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信