具有未知控制仿射动力学的学习有限视界最优控制

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Yuqing Chen , Yangzhi Li , David J. Braun
{"title":"具有未知控制仿射动力学的学习有限视界最优控制","authors":"Yuqing Chen ,&nbsp;Yangzhi Li ,&nbsp;David J. Braun","doi":"10.1016/j.sysconle.2025.106161","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a method for learning finite-horizon optimal control for systems with control-affine dynamics without using the model of the system dynamics. We approximate the time- and state-dependent optimal control policy using model-free relearning of simple linear control policies. Assuming persistent excitation, we prove the convergence and optimality of the proposed learning method and demonstrate its use through a numerical example.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"203 ","pages":"Article 106161"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning finite-horizon optimal control with unknown control-affine dynamics\",\"authors\":\"Yuqing Chen ,&nbsp;Yangzhi Li ,&nbsp;David J. Braun\",\"doi\":\"10.1016/j.sysconle.2025.106161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a method for learning finite-horizon optimal control for systems with control-affine dynamics without using the model of the system dynamics. We approximate the time- and state-dependent optimal control policy using model-free relearning of simple linear control policies. Assuming persistent excitation, we prove the convergence and optimality of the proposed learning method and demonstrate its use through a numerical example.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"203 \",\"pages\":\"Article 106161\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125001434\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125001434","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种不使用系统动力学模型学习控制仿射动力学系统的有限视界最优控制的方法。我们使用简单线性控制策略的无模型再学习来近似时间和状态相关的最优控制策略。在假设持续激励的情况下,我们证明了所提出的学习方法的收敛性和最优性,并通过一个数值例子说明了它的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning finite-horizon optimal control with unknown control-affine dynamics
This paper introduces a method for learning finite-horizon optimal control for systems with control-affine dynamics without using the model of the system dynamics. We approximate the time- and state-dependent optimal control policy using model-free relearning of simple linear control policies. Assuming persistent excitation, we prove the convergence and optimality of the proposed learning method and demonstrate its use through a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信