{"title":"LABCAT:使用主成分对齐信任区域的局部自适应贝叶斯优化","authors":"E. Visser, C.E. van Daalen, J.C. Schoeman","doi":"10.1016/j.swevo.2025.101986","DOIUrl":null,"url":null,"abstract":"<div><div>Bayesian optimization (BO) is a popular method for optimizing expensive black-box functions. BO has several well-documented shortcomings, including computational slowdown with longer optimization runs, poor suitability for non-stationary or ill-conditioned objective functions, and poor convergence characteristics. Several algorithms have been proposed that incorporate local strategies, such as trust regions, into BO to mitigate these limitations; however, none address all of them satisfactorily. To address these shortcomings, we propose the LABCAT algorithm, which extends trust-region-based BO by adding a rotation aligning the trust region with the weighted principal components and an adaptive rescaling strategy based on the length-scales of a local Gaussian process surrogate model with automatic relevance determination. Through extensive numerical experiments using a set of synthetic test functions and the well-known COCO benchmarking software, we show that the LABCAT algorithm outperforms several state-of-the-art BO and other black-box optimization algorithms.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"97 ","pages":"Article 101986"},"PeriodicalIF":8.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LABCAT: Locally adaptive Bayesian optimization using principal-component-aligned trust regions\",\"authors\":\"E. Visser, C.E. van Daalen, J.C. Schoeman\",\"doi\":\"10.1016/j.swevo.2025.101986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bayesian optimization (BO) is a popular method for optimizing expensive black-box functions. BO has several well-documented shortcomings, including computational slowdown with longer optimization runs, poor suitability for non-stationary or ill-conditioned objective functions, and poor convergence characteristics. Several algorithms have been proposed that incorporate local strategies, such as trust regions, into BO to mitigate these limitations; however, none address all of them satisfactorily. To address these shortcomings, we propose the LABCAT algorithm, which extends trust-region-based BO by adding a rotation aligning the trust region with the weighted principal components and an adaptive rescaling strategy based on the length-scales of a local Gaussian process surrogate model with automatic relevance determination. Through extensive numerical experiments using a set of synthetic test functions and the well-known COCO benchmarking software, we show that the LABCAT algorithm outperforms several state-of-the-art BO and other black-box optimization algorithms.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"97 \",\"pages\":\"Article 101986\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225001440\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225001440","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
LABCAT: Locally adaptive Bayesian optimization using principal-component-aligned trust regions
Bayesian optimization (BO) is a popular method for optimizing expensive black-box functions. BO has several well-documented shortcomings, including computational slowdown with longer optimization runs, poor suitability for non-stationary or ill-conditioned objective functions, and poor convergence characteristics. Several algorithms have been proposed that incorporate local strategies, such as trust regions, into BO to mitigate these limitations; however, none address all of them satisfactorily. To address these shortcomings, we propose the LABCAT algorithm, which extends trust-region-based BO by adding a rotation aligning the trust region with the weighted principal components and an adaptive rescaling strategy based on the length-scales of a local Gaussian process surrogate model with automatic relevance determination. Through extensive numerical experiments using a set of synthetic test functions and the well-known COCO benchmarking software, we show that the LABCAT algorithm outperforms several state-of-the-art BO and other black-box optimization algorithms.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.