Youjeong Lee , Jong Kim , Min-Cheol Han , Cheon-Goo Han , Dongyeop Han
{"title":"基于坍落度流动试验结果的高流动性混凝土稳定性定量评价方法","authors":"Youjeong Lee , Jong Kim , Min-Cheol Han , Cheon-Goo Han , Dongyeop Han","doi":"10.1016/j.jobe.2025.113167","DOIUrl":null,"url":null,"abstract":"<div><div>This research introduces a quantitative method for evaluating stability. ASTM <span><span>C1611</span><svg><path></path></svg></span> suggested a visual stability index (VSI) with a simple stability evaluation method. Although this method has four phases of stability conditions, it is still difficult to define the stability quantitatively. This research presents a new evaluation index for segregation (EIS) as a quantitative evaluation method of high-fluidity concrete stability. Since the proposed method is calculated based on the shape of the slump flow test results, the basic principle and field applicability are the same as VSI. A wide range of concrete fluidity conditions were tested using the authors’ EIS method to analyze and compare with VSI. The EIS method proved dependable during these tests. Using the proposed EIS method as a VSI reinforcing method, a more precise evaluation of high-fluidity stability was achieved for concrete mixtures.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"111 ","pages":"Article 113167"},"PeriodicalIF":6.7000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quantitative stability evaluation method for high fluidity concrete based on slump flow test results\",\"authors\":\"Youjeong Lee , Jong Kim , Min-Cheol Han , Cheon-Goo Han , Dongyeop Han\",\"doi\":\"10.1016/j.jobe.2025.113167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research introduces a quantitative method for evaluating stability. ASTM <span><span>C1611</span><svg><path></path></svg></span> suggested a visual stability index (VSI) with a simple stability evaluation method. Although this method has four phases of stability conditions, it is still difficult to define the stability quantitatively. This research presents a new evaluation index for segregation (EIS) as a quantitative evaluation method of high-fluidity concrete stability. Since the proposed method is calculated based on the shape of the slump flow test results, the basic principle and field applicability are the same as VSI. A wide range of concrete fluidity conditions were tested using the authors’ EIS method to analyze and compare with VSI. The EIS method proved dependable during these tests. Using the proposed EIS method as a VSI reinforcing method, a more precise evaluation of high-fluidity stability was achieved for concrete mixtures.</div></div>\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":\"111 \",\"pages\":\"Article 113167\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352710225014044\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225014044","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A Quantitative stability evaluation method for high fluidity concrete based on slump flow test results
This research introduces a quantitative method for evaluating stability. ASTM C1611 suggested a visual stability index (VSI) with a simple stability evaluation method. Although this method has four phases of stability conditions, it is still difficult to define the stability quantitatively. This research presents a new evaluation index for segregation (EIS) as a quantitative evaluation method of high-fluidity concrete stability. Since the proposed method is calculated based on the shape of the slump flow test results, the basic principle and field applicability are the same as VSI. A wide range of concrete fluidity conditions were tested using the authors’ EIS method to analyze and compare with VSI. The EIS method proved dependable during these tests. Using the proposed EIS method as a VSI reinforcing method, a more precise evaluation of high-fluidity stability was achieved for concrete mixtures.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.