Jonas Kost, Nathalie Peyer, Jörg Huwyler, Maxim Puchkov
{"title":"空心羟基磷灰石微胶囊的载药机制","authors":"Jonas Kost, Nathalie Peyer, Jörg Huwyler, Maxim Puchkov","doi":"10.1016/j.ejpb.2025.114785","DOIUrl":null,"url":null,"abstract":"<div><div>Inorganic hydroxyapatite microcapsules are innovative drug delivery devices tailored for oral drug delivery. They were designed as novel excipients, the so-called template inverted particles (TIP), to assist in preparing the orally disintegrating tablets. This study characterized the drug loading capacity using 11 clinically relevant drugs covering all BCS classes, focusing on midazolam HCl, ivermectin, ibuprofen, and metronidazole benzoate. An exceptionally high drug loading capacity of 45 % (v/v) was observed for all studied drugs. Compaction of loaded TIP resulted in mechanically stable tablets with tensile strengths of up to 6 MPa and disintegrating in a few seconds upon contact with water. Accelerated dissolution of encapsulated drugs is explained by the microcapsules’ high specific surface area and the inhibited crystallization due to spacial constraints for some tested drugs. Efficient drug loading into TIP’s internal hollow cavity structure is facilitated by a self-loading mechanism, eliminating the need for complex, drug-specific loading strategies. A mathematical model is presented to describe the self-loading mechanism of TIP, which is responsible for exclusive drug deposition within the cavity of the particles. We demonstrate that TIP, being a versatile and cost-effective platform technology, has the potential to facilitate the formulation development process of patient-friendly medicines.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"214 ","pages":"Article 114785"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug loading mechanism of hollow hydroxyapatite microcapsules\",\"authors\":\"Jonas Kost, Nathalie Peyer, Jörg Huwyler, Maxim Puchkov\",\"doi\":\"10.1016/j.ejpb.2025.114785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inorganic hydroxyapatite microcapsules are innovative drug delivery devices tailored for oral drug delivery. They were designed as novel excipients, the so-called template inverted particles (TIP), to assist in preparing the orally disintegrating tablets. This study characterized the drug loading capacity using 11 clinically relevant drugs covering all BCS classes, focusing on midazolam HCl, ivermectin, ibuprofen, and metronidazole benzoate. An exceptionally high drug loading capacity of 45 % (v/v) was observed for all studied drugs. Compaction of loaded TIP resulted in mechanically stable tablets with tensile strengths of up to 6 MPa and disintegrating in a few seconds upon contact with water. Accelerated dissolution of encapsulated drugs is explained by the microcapsules’ high specific surface area and the inhibited crystallization due to spacial constraints for some tested drugs. Efficient drug loading into TIP’s internal hollow cavity structure is facilitated by a self-loading mechanism, eliminating the need for complex, drug-specific loading strategies. A mathematical model is presented to describe the self-loading mechanism of TIP, which is responsible for exclusive drug deposition within the cavity of the particles. We demonstrate that TIP, being a versatile and cost-effective platform technology, has the potential to facilitate the formulation development process of patient-friendly medicines.</div></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":\"214 \",\"pages\":\"Article 114785\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641125001626\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641125001626","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Drug loading mechanism of hollow hydroxyapatite microcapsules
Inorganic hydroxyapatite microcapsules are innovative drug delivery devices tailored for oral drug delivery. They were designed as novel excipients, the so-called template inverted particles (TIP), to assist in preparing the orally disintegrating tablets. This study characterized the drug loading capacity using 11 clinically relevant drugs covering all BCS classes, focusing on midazolam HCl, ivermectin, ibuprofen, and metronidazole benzoate. An exceptionally high drug loading capacity of 45 % (v/v) was observed for all studied drugs. Compaction of loaded TIP resulted in mechanically stable tablets with tensile strengths of up to 6 MPa and disintegrating in a few seconds upon contact with water. Accelerated dissolution of encapsulated drugs is explained by the microcapsules’ high specific surface area and the inhibited crystallization due to spacial constraints for some tested drugs. Efficient drug loading into TIP’s internal hollow cavity structure is facilitated by a self-loading mechanism, eliminating the need for complex, drug-specific loading strategies. A mathematical model is presented to describe the self-loading mechanism of TIP, which is responsible for exclusive drug deposition within the cavity of the particles. We demonstrate that TIP, being a versatile and cost-effective platform technology, has the potential to facilitate the formulation development process of patient-friendly medicines.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.