Rimsha Perveen , Shumaila Bibi , Mohammad Danish , Sadia Atta , Sobhy M. Ibrahim , Sadam Hussain , Muhammad Ahmad Wattoo , Shu-Juan Bao , Aziz Ur Rehman
{"title":"定制分层MoZrO3/MoS2无与伦比的高效电催化析氧过程","authors":"Rimsha Perveen , Shumaila Bibi , Mohammad Danish , Sadia Atta , Sobhy M. Ibrahim , Sadam Hussain , Muhammad Ahmad Wattoo , Shu-Juan Bao , Aziz Ur Rehman","doi":"10.1016/j.flatc.2025.100900","DOIUrl":null,"url":null,"abstract":"<div><div>The fabrication of earth-abundant and highly efficient electrocatalysts to replace benchmark materials such as RuO<sub>2</sub> and IrO<sub>2</sub> has attained significant attention from experts for advancing clean energy processes, particularly through the oxygen evolution reaction (OER) in alkaline solutions. Presented work describes a new two-dimensional MoS<sub>2</sub> nanoflower doped with molybdenum and zirconium (MoZrO<sub>3</sub>/MoS<sub>2</sub>) synthesized via a facile and efficient in situ hydrothermal strategy. This robust and cost-effective electrocatalyst demonstrates superior activity, stability, and scalability for electrocatalytic applications. The MoZrO<sub>3</sub>/MoS<sub>2</sub> nanostructure exhibits a highly synergistic interaction, probably due to the incorporation of the metallic MoZrO<sub>3</sub> phase, which significantly enhances electronic conductivity, reduces charge transfer resistance, and maximizes active site availability. Comprehensive characterization, including FTIR, XRD, and SEM analyses, confirmed the crystalline and structural integrity of the synthesized material. Notably, the MoZrO<sub>3</sub>/MoS<sub>2</sub> composite achieved an impressively low overpotential of 0.252 V at 10 mA cm<sup>−2</sup>, outperforming both pristine MoS<sub>2</sub> (0.303 V) and CuZrO<sub>3</sub>/MoS<sub>2</sub> (0.283 V) in identical conditions. The nanocomposite also exhibits exceptional kinetics with a Tafel slope of 43.5 mV dec<sup>−1</sup> and robust long-term stability, maintaining performance over 24 h of continuous operation. DFT analysis further validates the synergistic interaction by revealing reduced bandgap, enhanced density of states, and favorable charge distribution at the interface, supporting the experimentally observed high OER activity. These remarkable properties highlight the ability of MoZrO<sub>3</sub>/MoS<sub>2</sub> as a stable, efficient, scalable and heterostructured electrocatalyst for OER. This study not only highlights a promising pathway for the design earth-abundant materials electrocatalysts as alternative to noble-metal-based catalysts for future innovations in cost-effective and sustainable energy conversion technologies.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"52 ","pages":"Article 100900"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring of hierarchical MoZrO3/MoS2 for unrivaled efficient Electrocatalytic oxygen evolution process\",\"authors\":\"Rimsha Perveen , Shumaila Bibi , Mohammad Danish , Sadia Atta , Sobhy M. Ibrahim , Sadam Hussain , Muhammad Ahmad Wattoo , Shu-Juan Bao , Aziz Ur Rehman\",\"doi\":\"10.1016/j.flatc.2025.100900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fabrication of earth-abundant and highly efficient electrocatalysts to replace benchmark materials such as RuO<sub>2</sub> and IrO<sub>2</sub> has attained significant attention from experts for advancing clean energy processes, particularly through the oxygen evolution reaction (OER) in alkaline solutions. Presented work describes a new two-dimensional MoS<sub>2</sub> nanoflower doped with molybdenum and zirconium (MoZrO<sub>3</sub>/MoS<sub>2</sub>) synthesized via a facile and efficient in situ hydrothermal strategy. This robust and cost-effective electrocatalyst demonstrates superior activity, stability, and scalability for electrocatalytic applications. The MoZrO<sub>3</sub>/MoS<sub>2</sub> nanostructure exhibits a highly synergistic interaction, probably due to the incorporation of the metallic MoZrO<sub>3</sub> phase, which significantly enhances electronic conductivity, reduces charge transfer resistance, and maximizes active site availability. Comprehensive characterization, including FTIR, XRD, and SEM analyses, confirmed the crystalline and structural integrity of the synthesized material. Notably, the MoZrO<sub>3</sub>/MoS<sub>2</sub> composite achieved an impressively low overpotential of 0.252 V at 10 mA cm<sup>−2</sup>, outperforming both pristine MoS<sub>2</sub> (0.303 V) and CuZrO<sub>3</sub>/MoS<sub>2</sub> (0.283 V) in identical conditions. The nanocomposite also exhibits exceptional kinetics with a Tafel slope of 43.5 mV dec<sup>−1</sup> and robust long-term stability, maintaining performance over 24 h of continuous operation. DFT analysis further validates the synergistic interaction by revealing reduced bandgap, enhanced density of states, and favorable charge distribution at the interface, supporting the experimentally observed high OER activity. These remarkable properties highlight the ability of MoZrO<sub>3</sub>/MoS<sub>2</sub> as a stable, efficient, scalable and heterostructured electrocatalyst for OER. This study not only highlights a promising pathway for the design earth-abundant materials electrocatalysts as alternative to noble-metal-based catalysts for future innovations in cost-effective and sustainable energy conversion technologies.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"52 \",\"pages\":\"Article 100900\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262725000947\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000947","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
制备储量丰富且高效的电催化剂以取代基准材料如RuO2和IrO2,已经引起了专家们的极大关注,以推进清洁能源工艺,特别是通过碱性溶液中的出氧反应(OER)。本文描述了一种新的二维掺杂钼锆的MoS2纳米花(MoZrO3/MoS2),通过一种简单有效的原位水热策略合成。这种稳健且经济高效的电催化剂在电催化应用中表现出卓越的活性、稳定性和可扩展性。MoZrO3/MoS2纳米结构表现出高度的协同相互作用,这可能是由于金属MoZrO3相的掺入,从而显著提高了电子导电性,降低了电荷转移电阻,并最大化了活性位点的可用性。综合表征,包括FTIR, XRD和SEM分析,证实了合成材料的晶体和结构完整性。值得注意的是,MoZrO3/MoS2复合材料在10 mA cm - 2条件下获得了0.252 V的过电位,优于原始MoS2 (0.303 V)和CuZrO3/MoS2 (0.283 V)。该纳米复合材料还表现出优异的动力学性能,其塔菲尔斜率为43.5 mV dec−1,具有强大的长期稳定性,可在24小时的连续运行中保持性能。DFT分析进一步验证了协同作用,揭示了带隙减小、态密度增强和界面上有利的电荷分布,支持了实验观察到的高OER活性。这些显著的性能突出了MoZrO3/MoS2作为OER的稳定、高效、可扩展和异质结构电催化剂的能力。这项研究不仅为设计富含地球资源的电催化剂作为贵金属基催化剂的替代品,在未来的创新中具有成本效益和可持续的能源转换技术提供了一条有希望的途径。
Tailoring of hierarchical MoZrO3/MoS2 for unrivaled efficient Electrocatalytic oxygen evolution process
The fabrication of earth-abundant and highly efficient electrocatalysts to replace benchmark materials such as RuO2 and IrO2 has attained significant attention from experts for advancing clean energy processes, particularly through the oxygen evolution reaction (OER) in alkaline solutions. Presented work describes a new two-dimensional MoS2 nanoflower doped with molybdenum and zirconium (MoZrO3/MoS2) synthesized via a facile and efficient in situ hydrothermal strategy. This robust and cost-effective electrocatalyst demonstrates superior activity, stability, and scalability for electrocatalytic applications. The MoZrO3/MoS2 nanostructure exhibits a highly synergistic interaction, probably due to the incorporation of the metallic MoZrO3 phase, which significantly enhances electronic conductivity, reduces charge transfer resistance, and maximizes active site availability. Comprehensive characterization, including FTIR, XRD, and SEM analyses, confirmed the crystalline and structural integrity of the synthesized material. Notably, the MoZrO3/MoS2 composite achieved an impressively low overpotential of 0.252 V at 10 mA cm−2, outperforming both pristine MoS2 (0.303 V) and CuZrO3/MoS2 (0.283 V) in identical conditions. The nanocomposite also exhibits exceptional kinetics with a Tafel slope of 43.5 mV dec−1 and robust long-term stability, maintaining performance over 24 h of continuous operation. DFT analysis further validates the synergistic interaction by revealing reduced bandgap, enhanced density of states, and favorable charge distribution at the interface, supporting the experimentally observed high OER activity. These remarkable properties highlight the ability of MoZrO3/MoS2 as a stable, efficient, scalable and heterostructured electrocatalyst for OER. This study not only highlights a promising pathway for the design earth-abundant materials electrocatalysts as alternative to noble-metal-based catalysts for future innovations in cost-effective and sustainable energy conversion technologies.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)