Vivian T. Hu, Shahrzad Ezzatpour, Ekaterina Selivanovitch, Julie Sahler, Sreetama Pal, Jordan Carter, Quoc Vinh Pham, Richard Ayomide Adeleke, Avery August, Hector C. Aguilar*, Susan Daniel* and Neha P. Kamat*,
{"title":"尼帕病毒跨膜蛋白在蛋白脂质体疫苗设计中的无细胞表达","authors":"Vivian T. Hu, Shahrzad Ezzatpour, Ekaterina Selivanovitch, Julie Sahler, Sreetama Pal, Jordan Carter, Quoc Vinh Pham, Richard Ayomide Adeleke, Avery August, Hector C. Aguilar*, Susan Daniel* and Neha P. Kamat*, ","doi":"10.1021/acsnano.4c1619010.1021/acsnano.4c16190","DOIUrl":null,"url":null,"abstract":"<p >Membrane proteins expressed on the surface of enveloped viruses are potent antigens in a vaccine, yet are difficult to produce and present due to their instability without a lipid scaffold. Current vaccination strategies that incorporate viral membrane proteins, such as live attenuated viruses, inactivated viruses, or extracellular vesicles, have limitations including lengthy production time, poor immunogenicity, extensive processing steps, and/or poor stability. Cell-free protein synthesis of viral membrane proteins offers a rapid, one-step method to assemble vaccine nanoparticles via cotranslational folding of membrane proteins into nanoscale liposomes. Here, we develop a vaccine candidate for the deadly Nipah virus (NiV), a highly lethal virus listed by the World Health Organization as a priority pathogen, by cell-free expressing two full-length Nipah virus membrane proteins. We demonstrate that both NiV fusion protein (NiV F) and NiV glycoprotein (NiV G) can be expressed and cotranslationally integrated into liposomes and that they fold into their native conformation. We find that the removal of a signal peptide sequence and the alteration of liposome lipid composition improve viral membrane protein incorporation. Furthermore, a lipid adjuvant, monophosphoryl lipid A (MPLA), can be readily added to liposomes without disrupting protein-vesicle loading or protein folding conformations. Finally, we demonstrate that our generated liposomal formulations lead to enhanced humoral responses in mice compared to empty and single-protein controls. This work establishes a platform to quickly assemble and present membrane antigens as multivalent vaccines that will enable a rapid response to the broad range of emerging pathogenic threats.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 23","pages":"21290–21306 21290–21306"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-Free Expression of Nipah Virus Transmembrane Proteins for Proteoliposome Vaccine Design\",\"authors\":\"Vivian T. Hu, Shahrzad Ezzatpour, Ekaterina Selivanovitch, Julie Sahler, Sreetama Pal, Jordan Carter, Quoc Vinh Pham, Richard Ayomide Adeleke, Avery August, Hector C. Aguilar*, Susan Daniel* and Neha P. Kamat*, \",\"doi\":\"10.1021/acsnano.4c1619010.1021/acsnano.4c16190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Membrane proteins expressed on the surface of enveloped viruses are potent antigens in a vaccine, yet are difficult to produce and present due to their instability without a lipid scaffold. Current vaccination strategies that incorporate viral membrane proteins, such as live attenuated viruses, inactivated viruses, or extracellular vesicles, have limitations including lengthy production time, poor immunogenicity, extensive processing steps, and/or poor stability. Cell-free protein synthesis of viral membrane proteins offers a rapid, one-step method to assemble vaccine nanoparticles via cotranslational folding of membrane proteins into nanoscale liposomes. Here, we develop a vaccine candidate for the deadly Nipah virus (NiV), a highly lethal virus listed by the World Health Organization as a priority pathogen, by cell-free expressing two full-length Nipah virus membrane proteins. We demonstrate that both NiV fusion protein (NiV F) and NiV glycoprotein (NiV G) can be expressed and cotranslationally integrated into liposomes and that they fold into their native conformation. We find that the removal of a signal peptide sequence and the alteration of liposome lipid composition improve viral membrane protein incorporation. Furthermore, a lipid adjuvant, monophosphoryl lipid A (MPLA), can be readily added to liposomes without disrupting protein-vesicle loading or protein folding conformations. Finally, we demonstrate that our generated liposomal formulations lead to enhanced humoral responses in mice compared to empty and single-protein controls. This work establishes a platform to quickly assemble and present membrane antigens as multivalent vaccines that will enable a rapid response to the broad range of emerging pathogenic threats.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 23\",\"pages\":\"21290–21306 21290–21306\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c16190\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c16190","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cell-Free Expression of Nipah Virus Transmembrane Proteins for Proteoliposome Vaccine Design
Membrane proteins expressed on the surface of enveloped viruses are potent antigens in a vaccine, yet are difficult to produce and present due to their instability without a lipid scaffold. Current vaccination strategies that incorporate viral membrane proteins, such as live attenuated viruses, inactivated viruses, or extracellular vesicles, have limitations including lengthy production time, poor immunogenicity, extensive processing steps, and/or poor stability. Cell-free protein synthesis of viral membrane proteins offers a rapid, one-step method to assemble vaccine nanoparticles via cotranslational folding of membrane proteins into nanoscale liposomes. Here, we develop a vaccine candidate for the deadly Nipah virus (NiV), a highly lethal virus listed by the World Health Organization as a priority pathogen, by cell-free expressing two full-length Nipah virus membrane proteins. We demonstrate that both NiV fusion protein (NiV F) and NiV glycoprotein (NiV G) can be expressed and cotranslationally integrated into liposomes and that they fold into their native conformation. We find that the removal of a signal peptide sequence and the alteration of liposome lipid composition improve viral membrane protein incorporation. Furthermore, a lipid adjuvant, monophosphoryl lipid A (MPLA), can be readily added to liposomes without disrupting protein-vesicle loading or protein folding conformations. Finally, we demonstrate that our generated liposomal formulations lead to enhanced humoral responses in mice compared to empty and single-protein controls. This work establishes a platform to quickly assemble and present membrane antigens as multivalent vaccines that will enable a rapid response to the broad range of emerging pathogenic threats.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.