h2so4介导的Fe-TiO2电催化氮氧化的两个数量级增强

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huayue Song, Xin Liu, Linlin Zhang*, Xin Zhang, Hengxin Yu, Xuesheng Yang, Mingxia Guo, Zhiwei Liang, Xiao Lin*, Xia Liu* and Xin Ding*, 
{"title":"h2so4介导的Fe-TiO2电催化氮氧化的两个数量级增强","authors":"Huayue Song,&nbsp;Xin Liu,&nbsp;Linlin Zhang*,&nbsp;Xin Zhang,&nbsp;Hengxin Yu,&nbsp;Xuesheng Yang,&nbsp;Mingxia Guo,&nbsp;Zhiwei Liang,&nbsp;Xiao Lin*,&nbsp;Xia Liu* and Xin Ding*,&nbsp;","doi":"10.1021/acsnano.5c0646610.1021/acsnano.5c06466","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic nitrogen oxidation emerges as a promising approach for the eco-friendly synthesis of nitrate, achieving remarkable progress in recent years. However, the precise oxidation mechanism remains poorly understood due to the complex interactions among the catalyst, electrolyte, and various intermediates, making it difficult to fully unravel the reaction pathways. Herein, we employed a Fe-TiO<sub>2</sub> catalyst in electrolytes enriched with SO<sub>4</sub><sup>2–</sup>/HSO<sub>5</sub><sup>–</sup>, significantly enhancing the nitrogen oxidation process through the in situ generation of *SO<sub>5</sub>H. Remarkably, an astounding 404-fold improvement over HClO<sub>4</sub> in a saturated potassium monopersulfate (PMS) system under a constant current density of 0.40 mA/cm<sup>2</sup> was achieved. Furthermore, an H<sub>2</sub>SO<sub>4</sub>-mediated electrochemical oxidation mechanism, characterized by the high efficacy and stability of *SO<sub>5</sub>H, was proposed and validated through the identification of key intermediates, comprehensive operational experiments, and in situ detection of the catalyst’s active sites.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 23","pages":"21858–21865 21858–21865"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Orders of Magnitude Enhancement in Nitrogen Oxidation via H2SO4-Mediated Fe-TiO2 Electrocatalysis\",\"authors\":\"Huayue Song,&nbsp;Xin Liu,&nbsp;Linlin Zhang*,&nbsp;Xin Zhang,&nbsp;Hengxin Yu,&nbsp;Xuesheng Yang,&nbsp;Mingxia Guo,&nbsp;Zhiwei Liang,&nbsp;Xiao Lin*,&nbsp;Xia Liu* and Xin Ding*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0646610.1021/acsnano.5c06466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrocatalytic nitrogen oxidation emerges as a promising approach for the eco-friendly synthesis of nitrate, achieving remarkable progress in recent years. However, the precise oxidation mechanism remains poorly understood due to the complex interactions among the catalyst, electrolyte, and various intermediates, making it difficult to fully unravel the reaction pathways. Herein, we employed a Fe-TiO<sub>2</sub> catalyst in electrolytes enriched with SO<sub>4</sub><sup>2–</sup>/HSO<sub>5</sub><sup>–</sup>, significantly enhancing the nitrogen oxidation process through the in situ generation of *SO<sub>5</sub>H. Remarkably, an astounding 404-fold improvement over HClO<sub>4</sub> in a saturated potassium monopersulfate (PMS) system under a constant current density of 0.40 mA/cm<sup>2</sup> was achieved. Furthermore, an H<sub>2</sub>SO<sub>4</sub>-mediated electrochemical oxidation mechanism, characterized by the high efficacy and stability of *SO<sub>5</sub>H, was proposed and validated through the identification of key intermediates, comprehensive operational experiments, and in situ detection of the catalyst’s active sites.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 23\",\"pages\":\"21858–21865 21858–21865\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c06466\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c06466","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化氮氧化法是一种很有前途的生态合成硝酸盐的方法,近年来取得了显著的进展。然而,由于催化剂、电解质和各种中间体之间复杂的相互作用,精确的氧化机制仍然知之甚少,因此很难完全揭示反应途径。本文中,我们在富含SO42 - /HSO5 -的电解液中使用了Fe-TiO2催化剂,通过原位生成*SO5H显著增强了氮氧化过程。值得注意的是,在恒定电流密度为0.40 mA/cm2的饱和过硫酸钾(PMS)体系中,HClO4的性能比HClO4提高了404倍。此外,通过关键中间体的鉴定、综合操作实验和催化剂活性位点的原位检测,提出并验证了h2so4介导的电化学氧化机制,该机制具有*SO5H高效稳定的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two Orders of Magnitude Enhancement in Nitrogen Oxidation via H2SO4-Mediated Fe-TiO2 Electrocatalysis

Two Orders of Magnitude Enhancement in Nitrogen Oxidation via H2SO4-Mediated Fe-TiO2 Electrocatalysis

Electrocatalytic nitrogen oxidation emerges as a promising approach for the eco-friendly synthesis of nitrate, achieving remarkable progress in recent years. However, the precise oxidation mechanism remains poorly understood due to the complex interactions among the catalyst, electrolyte, and various intermediates, making it difficult to fully unravel the reaction pathways. Herein, we employed a Fe-TiO2 catalyst in electrolytes enriched with SO42–/HSO5, significantly enhancing the nitrogen oxidation process through the in situ generation of *SO5H. Remarkably, an astounding 404-fold improvement over HClO4 in a saturated potassium monopersulfate (PMS) system under a constant current density of 0.40 mA/cm2 was achieved. Furthermore, an H2SO4-mediated electrochemical oxidation mechanism, characterized by the high efficacy and stability of *SO5H, was proposed and validated through the identification of key intermediates, comprehensive operational experiments, and in situ detection of the catalyst’s active sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信