{"title":"循环经济驱动的复合材料挤出三维打印:聚(甲基丙烯酸甲酯)从回收废料与优化生物质衍生的生物炭填料含量","authors":"Nectarios Vidakis, Nikolaos Michailidis, Dimitrios Kalderis, Emmanuel Maravelakis, Vassilis Papadakis, Apostolos Argyros, Nikolaos Mountakis, Maria Spyridaki, Nektarios Nasikas and Markos Petousis*, ","doi":"10.1021/acsomega.5c0252510.1021/acsomega.5c02525","DOIUrl":null,"url":null,"abstract":"<p >Environmentally friendly materials are emerging materials that find applications in an increasing number of cases when being three-dimensional printed (3D-P), as they can provide many possibilities and offer unique properties to fulfill industrial needs and requirements. As part of that effort, recycled (from sheet trimmings waste) poly(methyl methacrylate) (PMMA) and (nature-sourced) biochar were selected to be combined and examined herein. Composites with Biochar concentration in the 0.0–10.0 wt % (step 2.0 wt %) range were assessed. Compounds were extruded into filaments, which fabricated coupons (material extrusion 3D-P) for the tests that followed. The samples were experimentally evaluated for their characteristics related to mechanical, chemical, rheological, and thermal behavior, as well as for their structure and morphology. Mechanical testing included tensile, bending, and Charpy Notched coupons’ investigation. The microhardness was also measured. In addition, quality characteristics were assessed through porosity and dimensional deviation data analysis. The composite distinguished in relation to pure PMMA was PMMA/Biochar 6.0 wt % (>20% increase in the strength on the tensile and flexural experiment), as most of the investigated properties revealed their greatest values in that Biochar concentration. Furthermore, the eco-friendly biochar addition positively affected most of the recycled PMMA characterization metrics assessed, showing potential for the environmentally friendly composites developed herein for the 3D-P process.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 23","pages":"24980–24995 24980–24995"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c02525","citationCount":"0","resultStr":"{\"title\":\"Cyclic Economy-Driven Composites for Material Extrusion Three-Dimensional Printing: Poly(methyl methacrylate) from Recycled Scrap with Optimized Biomass-Derived Biochar Filler Content\",\"authors\":\"Nectarios Vidakis, Nikolaos Michailidis, Dimitrios Kalderis, Emmanuel Maravelakis, Vassilis Papadakis, Apostolos Argyros, Nikolaos Mountakis, Maria Spyridaki, Nektarios Nasikas and Markos Petousis*, \",\"doi\":\"10.1021/acsomega.5c0252510.1021/acsomega.5c02525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Environmentally friendly materials are emerging materials that find applications in an increasing number of cases when being three-dimensional printed (3D-P), as they can provide many possibilities and offer unique properties to fulfill industrial needs and requirements. As part of that effort, recycled (from sheet trimmings waste) poly(methyl methacrylate) (PMMA) and (nature-sourced) biochar were selected to be combined and examined herein. Composites with Biochar concentration in the 0.0–10.0 wt % (step 2.0 wt %) range were assessed. Compounds were extruded into filaments, which fabricated coupons (material extrusion 3D-P) for the tests that followed. The samples were experimentally evaluated for their characteristics related to mechanical, chemical, rheological, and thermal behavior, as well as for their structure and morphology. Mechanical testing included tensile, bending, and Charpy Notched coupons’ investigation. The microhardness was also measured. In addition, quality characteristics were assessed through porosity and dimensional deviation data analysis. The composite distinguished in relation to pure PMMA was PMMA/Biochar 6.0 wt % (>20% increase in the strength on the tensile and flexural experiment), as most of the investigated properties revealed their greatest values in that Biochar concentration. Furthermore, the eco-friendly biochar addition positively affected most of the recycled PMMA characterization metrics assessed, showing potential for the environmentally friendly composites developed herein for the 3D-P process.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 23\",\"pages\":\"24980–24995 24980–24995\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c02525\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c02525\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c02525","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cyclic Economy-Driven Composites for Material Extrusion Three-Dimensional Printing: Poly(methyl methacrylate) from Recycled Scrap with Optimized Biomass-Derived Biochar Filler Content
Environmentally friendly materials are emerging materials that find applications in an increasing number of cases when being three-dimensional printed (3D-P), as they can provide many possibilities and offer unique properties to fulfill industrial needs and requirements. As part of that effort, recycled (from sheet trimmings waste) poly(methyl methacrylate) (PMMA) and (nature-sourced) biochar were selected to be combined and examined herein. Composites with Biochar concentration in the 0.0–10.0 wt % (step 2.0 wt %) range were assessed. Compounds were extruded into filaments, which fabricated coupons (material extrusion 3D-P) for the tests that followed. The samples were experimentally evaluated for their characteristics related to mechanical, chemical, rheological, and thermal behavior, as well as for their structure and morphology. Mechanical testing included tensile, bending, and Charpy Notched coupons’ investigation. The microhardness was also measured. In addition, quality characteristics were assessed through porosity and dimensional deviation data analysis. The composite distinguished in relation to pure PMMA was PMMA/Biochar 6.0 wt % (>20% increase in the strength on the tensile and flexural experiment), as most of the investigated properties revealed their greatest values in that Biochar concentration. Furthermore, the eco-friendly biochar addition positively affected most of the recycled PMMA characterization metrics assessed, showing potential for the environmentally friendly composites developed herein for the 3D-P process.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.