Bo Ren , Yufei Zhao , Xiangrui Wang , Mengjing Wang , Ying Wang , Xiaomin Li , Wen-Hong Fan
{"title":"污染物在脊椎动物中的分布:器官、细胞和细胞器","authors":"Bo Ren , Yufei Zhao , Xiangrui Wang , Mengjing Wang , Ying Wang , Xiaomin Li , Wen-Hong Fan","doi":"10.1016/j.envpol.2025.126680","DOIUrl":null,"url":null,"abstract":"<div><div>Pollutant accumulation patterns are essential for understanding their toxicity mechanisms and health risks. Accurately identifying pollutant accumulation sites and toxicity targets requires an integrated understanding of their distribution across multiple scales. This review systematically examines recent advances in the multi-scale distribution of environmental pollutants in vertebrates, spanning organ, cellular, and subcellular levels. It highlights the influence of exposure pathways (inhalation, ingestion, dermal) and partition coefficients on pollutant biodistribution, while also emphasizing the uncertainties arising from pollutant biotransformation. Compared to metals and small-molecule organics, nanomaterials (NMs) generally exhibit lower partition coefficients, and their distributions are much susceptible to the exposure pathway. While traditional studies focus on organ-level distribution, emerging high-resolution techniques (e.g., single-cell sequencing) are increasingly revealing pollutant dynamics at the cellular scale. However, only limited studies have explored pollutant distribution at the cell population and subcellular levels. Most research has concentrated on the cellular distribution of pollutants in the blood, intestine, liver, and gill/lung. The remaining works are largely limited to the multi-scale distribution of NMs. Future research should prioritize cross-scale imaging technologies, computational predictive models, and a greater focus on pollutant speciation in blood and subcellular compartments. By bridging the gap between macroscopic accumulation and microscopic toxicity mechanisms, this review provides a framework for advancing risk assessment and targeted interventions in environmental health.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"382 ","pages":"Article 126680"},"PeriodicalIF":7.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pollutant distribution in vertebrates across scales: Organs, cells, and organelles\",\"authors\":\"Bo Ren , Yufei Zhao , Xiangrui Wang , Mengjing Wang , Ying Wang , Xiaomin Li , Wen-Hong Fan\",\"doi\":\"10.1016/j.envpol.2025.126680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pollutant accumulation patterns are essential for understanding their toxicity mechanisms and health risks. Accurately identifying pollutant accumulation sites and toxicity targets requires an integrated understanding of their distribution across multiple scales. This review systematically examines recent advances in the multi-scale distribution of environmental pollutants in vertebrates, spanning organ, cellular, and subcellular levels. It highlights the influence of exposure pathways (inhalation, ingestion, dermal) and partition coefficients on pollutant biodistribution, while also emphasizing the uncertainties arising from pollutant biotransformation. Compared to metals and small-molecule organics, nanomaterials (NMs) generally exhibit lower partition coefficients, and their distributions are much susceptible to the exposure pathway. While traditional studies focus on organ-level distribution, emerging high-resolution techniques (e.g., single-cell sequencing) are increasingly revealing pollutant dynamics at the cellular scale. However, only limited studies have explored pollutant distribution at the cell population and subcellular levels. Most research has concentrated on the cellular distribution of pollutants in the blood, intestine, liver, and gill/lung. The remaining works are largely limited to the multi-scale distribution of NMs. Future research should prioritize cross-scale imaging technologies, computational predictive models, and a greater focus on pollutant speciation in blood and subcellular compartments. By bridging the gap between macroscopic accumulation and microscopic toxicity mechanisms, this review provides a framework for advancing risk assessment and targeted interventions in environmental health.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"382 \",\"pages\":\"Article 126680\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026974912501053X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026974912501053X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Pollutant distribution in vertebrates across scales: Organs, cells, and organelles
Pollutant accumulation patterns are essential for understanding their toxicity mechanisms and health risks. Accurately identifying pollutant accumulation sites and toxicity targets requires an integrated understanding of their distribution across multiple scales. This review systematically examines recent advances in the multi-scale distribution of environmental pollutants in vertebrates, spanning organ, cellular, and subcellular levels. It highlights the influence of exposure pathways (inhalation, ingestion, dermal) and partition coefficients on pollutant biodistribution, while also emphasizing the uncertainties arising from pollutant biotransformation. Compared to metals and small-molecule organics, nanomaterials (NMs) generally exhibit lower partition coefficients, and their distributions are much susceptible to the exposure pathway. While traditional studies focus on organ-level distribution, emerging high-resolution techniques (e.g., single-cell sequencing) are increasingly revealing pollutant dynamics at the cellular scale. However, only limited studies have explored pollutant distribution at the cell population and subcellular levels. Most research has concentrated on the cellular distribution of pollutants in the blood, intestine, liver, and gill/lung. The remaining works are largely limited to the multi-scale distribution of NMs. Future research should prioritize cross-scale imaging technologies, computational predictive models, and a greater focus on pollutant speciation in blood and subcellular compartments. By bridging the gap between macroscopic accumulation and microscopic toxicity mechanisms, this review provides a framework for advancing risk assessment and targeted interventions in environmental health.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.