表面非晶化提高了酸性析氧的活性和稳定性

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Muhammad Bilal Hussain, Munir Ahmad, Shabab Hussain, Rida Javed, Zulakha Zafar, Dinghua Zhou, Arunpandiyan Surulinathan, Renfei Feng, Xian-Zhu Fu, Shao-Qing Liu and Jing-Li Luo
{"title":"表面非晶化提高了酸性析氧的活性和稳定性","authors":"Muhammad Bilal Hussain, Munir Ahmad, Shabab Hussain, Rida Javed, Zulakha Zafar, Dinghua Zhou, Arunpandiyan Surulinathan, Renfei Feng, Xian-Zhu Fu, Shao-Qing Liu and Jing-Li Luo","doi":"10.1039/D5TA01910A","DOIUrl":null,"url":null,"abstract":"<p >The oxygen evolution reaction (OER) in acidic environments is crucial for various energy storage/conversion technologies. Enhancing acidic OER efficiency through precise optimization of the electronic structure at active metal sites remains a significant challenge. Due to structural flexibility and accessible active sites, amorphization offers a knob to enhance the activity of Ru-based catalysts. Here, we developed a RuO<small><sub>2</sub></small>/IrO<small><sub>2</sub></small> composite catalyst characterized by a crystalline core and an amorphous surface structure. Density functional theory results indicate that surface amorphization can effectively lower the reaction energy barrier and accelerate electron transfer than its fully crystalline counterpart. <em>Operando</em> differential electrochemical mass spectrometry proved that surface amorphization inhibits the leaching of lattice oxygen. As a result, the RuO<small><sub>2</sub></small>/IrO<small><sub>2</sub></small> composite demonstrates superior OER performance, achieving a low overpotential of 174 mV at 10 mA cm<small><sup>−2</sup></small> and remarkable stability for 95 hours in a 0.5 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small> electrolyte. This work inspires new design ideas for high-performance acid electrocatalysts, providing insights for developing robust, efficient materials for sustainable energy applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 29","pages":" 23706-23714"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01910a?page=search","citationCount":"0","resultStr":"{\"title\":\"Surface amorphization advances activity and stability for acidic oxygen evolution†\",\"authors\":\"Muhammad Bilal Hussain, Munir Ahmad, Shabab Hussain, Rida Javed, Zulakha Zafar, Dinghua Zhou, Arunpandiyan Surulinathan, Renfei Feng, Xian-Zhu Fu, Shao-Qing Liu and Jing-Li Luo\",\"doi\":\"10.1039/D5TA01910A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The oxygen evolution reaction (OER) in acidic environments is crucial for various energy storage/conversion technologies. Enhancing acidic OER efficiency through precise optimization of the electronic structure at active metal sites remains a significant challenge. Due to structural flexibility and accessible active sites, amorphization offers a knob to enhance the activity of Ru-based catalysts. Here, we developed a RuO<small><sub>2</sub></small>/IrO<small><sub>2</sub></small> composite catalyst characterized by a crystalline core and an amorphous surface structure. Density functional theory results indicate that surface amorphization can effectively lower the reaction energy barrier and accelerate electron transfer than its fully crystalline counterpart. <em>Operando</em> differential electrochemical mass spectrometry proved that surface amorphization inhibits the leaching of lattice oxygen. As a result, the RuO<small><sub>2</sub></small>/IrO<small><sub>2</sub></small> composite demonstrates superior OER performance, achieving a low overpotential of 174 mV at 10 mA cm<small><sup>−2</sup></small> and remarkable stability for 95 hours in a 0.5 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small> electrolyte. This work inspires new design ideas for high-performance acid electrocatalysts, providing insights for developing robust, efficient materials for sustainable energy applications.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 29\",\"pages\":\" 23706-23714\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01910a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01910a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01910a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

酸性环境下的析氧反应(OER)对各种能量存储/转换技术至关重要。通过精确优化活性金属位点的电子结构来提高酸性OER效率仍然是一个重大挑战。由于结构的灵活性和可接近的活性位点,非晶化为提高钌基催化剂的活性提供了一个旋钮。在这里,我们开发了一种具有结晶核心和无定形表面结构的RuO₂/IrO₂复合催化剂。密度泛函理论结果表明,与全晶相比,表面非晶化能有效降低反应能垒,加速电子转移。Operando微分电化学质谱法证明,表面非晶化抑制晶格氧的浸出。因此,RuO₂/IrO₂复合材料表现出优异的OER性能,在10 mA cm⁻²时具有174 mV的低过电位,并且在0.5 M H₂SO₄电解质中具有95小时的卓越稳定性。这项工作激发了高性能酸性电催化剂的新设计思想,为开发用于可持续能源应用的坚固、高效材料提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface amorphization advances activity and stability for acidic oxygen evolution†

Surface amorphization advances activity and stability for acidic oxygen evolution†

The oxygen evolution reaction (OER) in acidic environments is crucial for various energy storage/conversion technologies. Enhancing acidic OER efficiency through precise optimization of the electronic structure at active metal sites remains a significant challenge. Due to structural flexibility and accessible active sites, amorphization offers a knob to enhance the activity of Ru-based catalysts. Here, we developed a RuO2/IrO2 composite catalyst characterized by a crystalline core and an amorphous surface structure. Density functional theory results indicate that surface amorphization can effectively lower the reaction energy barrier and accelerate electron transfer than its fully crystalline counterpart. Operando differential electrochemical mass spectrometry proved that surface amorphization inhibits the leaching of lattice oxygen. As a result, the RuO2/IrO2 composite demonstrates superior OER performance, achieving a low overpotential of 174 mV at 10 mA cm−2 and remarkable stability for 95 hours in a 0.5 M H2SO4 electrolyte. This work inspires new design ideas for high-performance acid electrocatalysts, providing insights for developing robust, efficient materials for sustainable energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信