对“通过FeN4-Cl-Ti结构调节Fe中间自旋态增强氧还原”的修正

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shuren Zhang, Yitong Han, Rui Zhang, Zhiyuan Zhang, Genban Sun
{"title":"对“通过FeN4-Cl-Ti结构调节Fe中间自旋态增强氧还原”的修正","authors":"Shuren Zhang, Yitong Han, Rui Zhang, Zhiyuan Zhang, Genban Sun","doi":"10.1002/aenm.202503036","DOIUrl":null,"url":null,"abstract":"<p><i>Adv. Energy Mater</i>. <b>2025</b>, <i>15</i>, 2403899</p>\n<p>DOI: 10.1002/aenm.202403899</p>\n<p>In the originally published version of this article, Figure 4d displayed a compressed vertical axis, resulting in a charge–discharge voltage range of ≈1.0–1.8 V. This was inconsistent with Figure 4e–g, which correctly showed the charge–discharge voltage range of ≈1.2–2.0 V. This visual distortion was caused by an unintended aspect ratio adjustment during plotting in Origin and did not reflect any error in the experimental data. The corrected version of Figure 4d, based on the same original dataset, now accurately reflects the intended voltage range. A revised version of the figure has been provided to replace the original. We apologize for this error.</p>\n<p><img alt=\"image\" loading=\"lazy\" src=\"/cms/asset/aa116b48-1800-4eb5-addd-186946bb3b48/aenm202503036-gra-0001.png\"/></p>\n<p><b>Figure 4</b>. a) Polarization and power density curves of Zn-air batteries using Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc, Ti<sub>4</sub>N<sub>3</sub>O<sub>x</sub>/FePc, FePc, and 20% Pt/C as cathodic catalysts; b) Specific capacity of Zn-air batteries using Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc, Ti<sub>4</sub>N<sub>3</sub>O<sub>x</sub>/FePc, FePc, and 20% Pt/C as cathodic catalysts; c) Photograph of a “BNU” light-emitting diode panel powered by a single Zn-air battery assembled with the Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc catalyst; d) Galvanostatic charge/discharge cycling performance of rechargeable Zn-air batteries equipped with either Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc or 20% Pt/C catalysts, at a current density of 15 mA cm<sup>−2</sup>; e–g) Voltage efficiency of Zn-air batteries utilizing Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc and 20% Pt/C during different charging and discharging periods.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"592 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction to “Regulating Fe Intermediate Spin States via FeN4-Cl-Ti Structure for Enhanced Oxygen Reduction”\",\"authors\":\"Shuren Zhang, Yitong Han, Rui Zhang, Zhiyuan Zhang, Genban Sun\",\"doi\":\"10.1002/aenm.202503036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Adv. Energy Mater</i>. <b>2025</b>, <i>15</i>, 2403899</p>\\n<p>DOI: 10.1002/aenm.202403899</p>\\n<p>In the originally published version of this article, Figure 4d displayed a compressed vertical axis, resulting in a charge–discharge voltage range of ≈1.0–1.8 V. This was inconsistent with Figure 4e–g, which correctly showed the charge–discharge voltage range of ≈1.2–2.0 V. This visual distortion was caused by an unintended aspect ratio adjustment during plotting in Origin and did not reflect any error in the experimental data. The corrected version of Figure 4d, based on the same original dataset, now accurately reflects the intended voltage range. A revised version of the figure has been provided to replace the original. We apologize for this error.</p>\\n<p><img alt=\\\"image\\\" loading=\\\"lazy\\\" src=\\\"/cms/asset/aa116b48-1800-4eb5-addd-186946bb3b48/aenm202503036-gra-0001.png\\\"/></p>\\n<p><b>Figure 4</b>. a) Polarization and power density curves of Zn-air batteries using Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc, Ti<sub>4</sub>N<sub>3</sub>O<sub>x</sub>/FePc, FePc, and 20% Pt/C as cathodic catalysts; b) Specific capacity of Zn-air batteries using Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc, Ti<sub>4</sub>N<sub>3</sub>O<sub>x</sub>/FePc, FePc, and 20% Pt/C as cathodic catalysts; c) Photograph of a “BNU” light-emitting diode panel powered by a single Zn-air battery assembled with the Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc catalyst; d) Galvanostatic charge/discharge cycling performance of rechargeable Zn-air batteries equipped with either Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc or 20% Pt/C catalysts, at a current density of 15 mA cm<sup>−2</sup>; e–g) Voltage efficiency of Zn-air batteries utilizing Ti<sub>4</sub>N<sub>3</sub>Cl<sub>x</sub>/FePc and 20% Pt/C during different charging and discharging periods.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"592 1\",\"pages\":\"\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202503036\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202503036","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

能源工程学报,2015,15,2403899DOI: 10.1002/aenm。在本文最初发表的版本中,图4d显示了一个压缩的垂直轴,从而得到≈1.0-1.8 V的充放电电压范围。这与图4e-g不一致,图4e-g正确地显示了≈1.2-2.0 V的充放电电压范围。这种视觉失真是由于在Origin中绘图时意外的纵横比调整引起的,并不反映实验数据中的任何错误。基于相同原始数据集的图4d的修正版本现在准确地反映了预期的电压范围。已提供一份修订版的数字以取代原来的数字。我们为这个错误道歉。图4。a)以Ti4N3Clx/FePc、Ti4N3Ox/FePc、FePc和20% Pt/C为阴极催化剂的锌空气电池极化和功率密度曲线;b)以Ti4N3Clx/FePc、Ti4N3Ox/FePc、FePc和20% Pt/C为阴极催化剂的锌空气电池比容量;c)由Ti4N3Clx/FePc催化剂组装的单个锌空气电池供电的“BNU”发光二极管面板照片;d)配置Ti4N3Clx/FePc或20% Pt/C催化剂的可充电锌空气电池在电流密度为15 mA cm−2时的恒流充放电循环性能;e-g)使用Ti4N3Clx/FePc和20% Pt/C的锌空气电池在不同充放电周期下的电压效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correction to “Regulating Fe Intermediate Spin States via FeN4-Cl-Ti Structure for Enhanced Oxygen Reduction”

Adv. Energy Mater. 2025, 15, 2403899

DOI: 10.1002/aenm.202403899

In the originally published version of this article, Figure 4d displayed a compressed vertical axis, resulting in a charge–discharge voltage range of ≈1.0–1.8 V. This was inconsistent with Figure 4e–g, which correctly showed the charge–discharge voltage range of ≈1.2–2.0 V. This visual distortion was caused by an unintended aspect ratio adjustment during plotting in Origin and did not reflect any error in the experimental data. The corrected version of Figure 4d, based on the same original dataset, now accurately reflects the intended voltage range. A revised version of the figure has been provided to replace the original. We apologize for this error.

image

Figure 4. a) Polarization and power density curves of Zn-air batteries using Ti4N3Clx/FePc, Ti4N3Ox/FePc, FePc, and 20% Pt/C as cathodic catalysts; b) Specific capacity of Zn-air batteries using Ti4N3Clx/FePc, Ti4N3Ox/FePc, FePc, and 20% Pt/C as cathodic catalysts; c) Photograph of a “BNU” light-emitting diode panel powered by a single Zn-air battery assembled with the Ti4N3Clx/FePc catalyst; d) Galvanostatic charge/discharge cycling performance of rechargeable Zn-air batteries equipped with either Ti4N3Clx/FePc or 20% Pt/C catalysts, at a current density of 15 mA cm−2; e–g) Voltage efficiency of Zn-air batteries utilizing Ti4N3Clx/FePc and 20% Pt/C during different charging and discharging periods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信