类二聚体排列EuAl2O4体系中反铁磁和铁磁相互作用的共存:巨低场低温磁热效应的调控策略

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhixing Ye, Yuanpeng Wang, Xuntong He, Zhaojun Mo, Lei Zhang, Xinqi Zheng, Lu Tian, Jianjian Gong, Shouguo Wang, Xucai Kan, Jun Shen
{"title":"类二聚体排列EuAl2O4体系中反铁磁和铁磁相互作用的共存:巨低场低温磁热效应的调控策略","authors":"Zhixing Ye, Yuanpeng Wang, Xuntong He, Zhaojun Mo, Lei Zhang, Xinqi Zheng, Lu Tian, Jianjian Gong, Shouguo Wang, Xucai Kan, Jun Shen","doi":"10.1002/adfm.202509843","DOIUrl":null,"url":null,"abstract":"In the realm of rare‐earth‐based magnetic refrigeration materials, the precise tuning of magnetic exchange interactions among rare‐earth ions is the key challenge to achieve large magnetocaloric effect (MCE) over a wide temperature range in the sub‐Kelvin region (&lt; 1 K) under low magnetic fields. Here, this work demonstrates that modulating the magnetic interactions within a system exhibiting coexisting antiferromagnetic and ferromagnetic interactions represents an ideal strategy. EuAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> features a unique dimer‐like structure, wherein every four Eu<jats:sup>2+</jats:sup> ions form a monomer. Within each monomer, the Eu<jats:sup>2+</jats:sup> ions are ferromagnetically coupled, whereas antiferromagnetic coupling exists between the monomer. This weak coexisting interaction facilitates a significant MCE under low fields: the magnetic ordering temperature (<jats:italic>T</jats:italic><jats:sub>ord</jats:sub>) is 0.9 K, and a maximum magnetic entropy change is 28.2 J kg<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> at 10 kOe, representing one of the best magnetic refrigerants reported with <jats:italic>T</jats:italic><jats:sub>ord</jats:sub> &lt; 1.5 K. Furthermore, by substituting Eu<jats:sup>2+</jats:sup> ions with non‐magnetic Sr<jats:sup>2+</jats:sup> ions, the local magnetic moment effect promotes a rebalancing of the magnetic exchange interactions, thereby further reducing the <jats:italic>T</jats:italic><jats:sub>ord</jats:sub> to 0.73 K and achieving an extended wide temperature range with a large MCE under low fields. This provides a new strategy for breaking the performance bottleneck of ultra‐low temperature magnetic refrigeration materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coexistence of Antiferromagnetic and Ferromagnetic Interactions in Dimer‐Like Arranged EuAl2O4 Systems: Regulatory Strategy to Giant Low Field Cryogenic Magnetocaloric Effects\",\"authors\":\"Zhixing Ye, Yuanpeng Wang, Xuntong He, Zhaojun Mo, Lei Zhang, Xinqi Zheng, Lu Tian, Jianjian Gong, Shouguo Wang, Xucai Kan, Jun Shen\",\"doi\":\"10.1002/adfm.202509843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of rare‐earth‐based magnetic refrigeration materials, the precise tuning of magnetic exchange interactions among rare‐earth ions is the key challenge to achieve large magnetocaloric effect (MCE) over a wide temperature range in the sub‐Kelvin region (&lt; 1 K) under low magnetic fields. Here, this work demonstrates that modulating the magnetic interactions within a system exhibiting coexisting antiferromagnetic and ferromagnetic interactions represents an ideal strategy. EuAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> features a unique dimer‐like structure, wherein every four Eu<jats:sup>2+</jats:sup> ions form a monomer. Within each monomer, the Eu<jats:sup>2+</jats:sup> ions are ferromagnetically coupled, whereas antiferromagnetic coupling exists between the monomer. This weak coexisting interaction facilitates a significant MCE under low fields: the magnetic ordering temperature (<jats:italic>T</jats:italic><jats:sub>ord</jats:sub>) is 0.9 K, and a maximum magnetic entropy change is 28.2 J kg<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> at 10 kOe, representing one of the best magnetic refrigerants reported with <jats:italic>T</jats:italic><jats:sub>ord</jats:sub> &lt; 1.5 K. Furthermore, by substituting Eu<jats:sup>2+</jats:sup> ions with non‐magnetic Sr<jats:sup>2+</jats:sup> ions, the local magnetic moment effect promotes a rebalancing of the magnetic exchange interactions, thereby further reducing the <jats:italic>T</jats:italic><jats:sub>ord</jats:sub> to 0.73 K and achieving an extended wide temperature range with a large MCE under low fields. This provides a new strategy for breaking the performance bottleneck of ultra‐low temperature magnetic refrigeration materials.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202509843\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509843","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在稀土基磁致冷材料领域,稀土离子之间磁交换相互作用的精确调谐是在亚开尔文区域(<;1k)在低磁场下。在这里,这项工作证明了在一个显示共存的反铁磁和铁磁相互作用的系统中调制磁相互作用是一种理想的策略。EuAl2O4具有独特的二聚体结构,其中每四个Eu2+离子形成一个单体。在每个单体内,Eu2+离子是铁磁偶联的,而单体之间存在反铁磁偶联。这种弱共存相互作用促进了低磁场下的显著MCE:磁有序温度(Tord)为0.9 K,在10 kOe时最大磁熵变化为28.2 J kg−1 K−1,代表了用Tord <报道的最好的磁性制冷剂之一;1.5 K。此外,通过用非磁性Sr2+离子取代Eu2+离子,局部磁矩效应促进了磁交换相互作用的再平衡,从而进一步将tod降低到0.73 K,并在低场下实现了更宽的温度范围和更大的MCE。这为突破超低温磁致冷材料的性能瓶颈提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coexistence of Antiferromagnetic and Ferromagnetic Interactions in Dimer‐Like Arranged EuAl2O4 Systems: Regulatory Strategy to Giant Low Field Cryogenic Magnetocaloric Effects
In the realm of rare‐earth‐based magnetic refrigeration materials, the precise tuning of magnetic exchange interactions among rare‐earth ions is the key challenge to achieve large magnetocaloric effect (MCE) over a wide temperature range in the sub‐Kelvin region (< 1 K) under low magnetic fields. Here, this work demonstrates that modulating the magnetic interactions within a system exhibiting coexisting antiferromagnetic and ferromagnetic interactions represents an ideal strategy. EuAl2O4 features a unique dimer‐like structure, wherein every four Eu2+ ions form a monomer. Within each monomer, the Eu2+ ions are ferromagnetically coupled, whereas antiferromagnetic coupling exists between the monomer. This weak coexisting interaction facilitates a significant MCE under low fields: the magnetic ordering temperature (Tord) is 0.9 K, and a maximum magnetic entropy change is 28.2 J kg−1 K−1 at 10 kOe, representing one of the best magnetic refrigerants reported with Tord < 1.5 K. Furthermore, by substituting Eu2+ ions with non‐magnetic Sr2+ ions, the local magnetic moment effect promotes a rebalancing of the magnetic exchange interactions, thereby further reducing the Tord to 0.73 K and achieving an extended wide temperature range with a large MCE under low fields. This provides a new strategy for breaking the performance bottleneck of ultra‐low temperature magnetic refrigeration materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信