Zhixing Ye, Yuanpeng Wang, Xuntong He, Zhaojun Mo, Lei Zhang, Xinqi Zheng, Lu Tian, Jianjian Gong, Shouguo Wang, Xucai Kan, Jun Shen
{"title":"类二聚体排列EuAl2O4体系中反铁磁和铁磁相互作用的共存:巨低场低温磁热效应的调控策略","authors":"Zhixing Ye, Yuanpeng Wang, Xuntong He, Zhaojun Mo, Lei Zhang, Xinqi Zheng, Lu Tian, Jianjian Gong, Shouguo Wang, Xucai Kan, Jun Shen","doi":"10.1002/adfm.202509843","DOIUrl":null,"url":null,"abstract":"In the realm of rare‐earth‐based magnetic refrigeration materials, the precise tuning of magnetic exchange interactions among rare‐earth ions is the key challenge to achieve large magnetocaloric effect (MCE) over a wide temperature range in the sub‐Kelvin region (< 1 K) under low magnetic fields. Here, this work demonstrates that modulating the magnetic interactions within a system exhibiting coexisting antiferromagnetic and ferromagnetic interactions represents an ideal strategy. EuAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> features a unique dimer‐like structure, wherein every four Eu<jats:sup>2+</jats:sup> ions form a monomer. Within each monomer, the Eu<jats:sup>2+</jats:sup> ions are ferromagnetically coupled, whereas antiferromagnetic coupling exists between the monomer. This weak coexisting interaction facilitates a significant MCE under low fields: the magnetic ordering temperature (<jats:italic>T</jats:italic><jats:sub>ord</jats:sub>) is 0.9 K, and a maximum magnetic entropy change is 28.2 J kg<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> at 10 kOe, representing one of the best magnetic refrigerants reported with <jats:italic>T</jats:italic><jats:sub>ord</jats:sub> < 1.5 K. Furthermore, by substituting Eu<jats:sup>2+</jats:sup> ions with non‐magnetic Sr<jats:sup>2+</jats:sup> ions, the local magnetic moment effect promotes a rebalancing of the magnetic exchange interactions, thereby further reducing the <jats:italic>T</jats:italic><jats:sub>ord</jats:sub> to 0.73 K and achieving an extended wide temperature range with a large MCE under low fields. This provides a new strategy for breaking the performance bottleneck of ultra‐low temperature magnetic refrigeration materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coexistence of Antiferromagnetic and Ferromagnetic Interactions in Dimer‐Like Arranged EuAl2O4 Systems: Regulatory Strategy to Giant Low Field Cryogenic Magnetocaloric Effects\",\"authors\":\"Zhixing Ye, Yuanpeng Wang, Xuntong He, Zhaojun Mo, Lei Zhang, Xinqi Zheng, Lu Tian, Jianjian Gong, Shouguo Wang, Xucai Kan, Jun Shen\",\"doi\":\"10.1002/adfm.202509843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of rare‐earth‐based magnetic refrigeration materials, the precise tuning of magnetic exchange interactions among rare‐earth ions is the key challenge to achieve large magnetocaloric effect (MCE) over a wide temperature range in the sub‐Kelvin region (< 1 K) under low magnetic fields. Here, this work demonstrates that modulating the magnetic interactions within a system exhibiting coexisting antiferromagnetic and ferromagnetic interactions represents an ideal strategy. EuAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> features a unique dimer‐like structure, wherein every four Eu<jats:sup>2+</jats:sup> ions form a monomer. Within each monomer, the Eu<jats:sup>2+</jats:sup> ions are ferromagnetically coupled, whereas antiferromagnetic coupling exists between the monomer. This weak coexisting interaction facilitates a significant MCE under low fields: the magnetic ordering temperature (<jats:italic>T</jats:italic><jats:sub>ord</jats:sub>) is 0.9 K, and a maximum magnetic entropy change is 28.2 J kg<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> at 10 kOe, representing one of the best magnetic refrigerants reported with <jats:italic>T</jats:italic><jats:sub>ord</jats:sub> < 1.5 K. Furthermore, by substituting Eu<jats:sup>2+</jats:sup> ions with non‐magnetic Sr<jats:sup>2+</jats:sup> ions, the local magnetic moment effect promotes a rebalancing of the magnetic exchange interactions, thereby further reducing the <jats:italic>T</jats:italic><jats:sub>ord</jats:sub> to 0.73 K and achieving an extended wide temperature range with a large MCE under low fields. This provides a new strategy for breaking the performance bottleneck of ultra‐low temperature magnetic refrigeration materials.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202509843\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509843","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Coexistence of Antiferromagnetic and Ferromagnetic Interactions in Dimer‐Like Arranged EuAl2O4 Systems: Regulatory Strategy to Giant Low Field Cryogenic Magnetocaloric Effects
In the realm of rare‐earth‐based magnetic refrigeration materials, the precise tuning of magnetic exchange interactions among rare‐earth ions is the key challenge to achieve large magnetocaloric effect (MCE) over a wide temperature range in the sub‐Kelvin region (< 1 K) under low magnetic fields. Here, this work demonstrates that modulating the magnetic interactions within a system exhibiting coexisting antiferromagnetic and ferromagnetic interactions represents an ideal strategy. EuAl2O4 features a unique dimer‐like structure, wherein every four Eu2+ ions form a monomer. Within each monomer, the Eu2+ ions are ferromagnetically coupled, whereas antiferromagnetic coupling exists between the monomer. This weak coexisting interaction facilitates a significant MCE under low fields: the magnetic ordering temperature (Tord) is 0.9 K, and a maximum magnetic entropy change is 28.2 J kg−1 K−1 at 10 kOe, representing one of the best magnetic refrigerants reported with Tord < 1.5 K. Furthermore, by substituting Eu2+ ions with non‐magnetic Sr2+ ions, the local magnetic moment effect promotes a rebalancing of the magnetic exchange interactions, thereby further reducing the Tord to 0.73 K and achieving an extended wide temperature range with a large MCE under low fields. This provides a new strategy for breaking the performance bottleneck of ultra‐low temperature magnetic refrigeration materials.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.