Rhianna D. Moore, Timothy A. Goudge, Athanasios Klidaras, Briony H. N. Horgan, Adrian Broz, Robin Wordsworth, William H. Farrand
{"title":"由侵蚀和气候模式驱动的古代火星景观的深层化学风化","authors":"Rhianna D. Moore, Timothy A. Goudge, Athanasios Klidaras, Briony H. N. Horgan, Adrian Broz, Robin Wordsworth, William H. Farrand","doi":"10.1038/s41550-025-02584-w","DOIUrl":null,"url":null,"abstract":"<p>Across Mars exist thick clay mineral-bearing stratigraphies (CSs), thought to have formed through top-down leaching early in Mars’s geological history (>3.7 billion years ago) under warmer, wetter conditions than at present. On Earth, such deposits require specific landscape and climatic conditions to develop; however, it is unclear how Mars’s local and global topographic variations and past climate activity influenced surface weathering and CS formation. Here we present observations that show that CSs tend to occur in areas where chemical weathering was favoured over physical erosion, farther from valley network activity and nearer standing bodies of water. We conclude that the development of thick CSs through enhanced chemical weathering on this tectonically inactive planet may have led to an imbalanced weathering–climate feedback compared with Earth. Our results support the hypothesis that long-term irreversible sequestration of water and cations within clay minerals may have inhibited hydrological activity, and potentially carbonate mineral formation, over time.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"13 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep chemical weathering on ancient Mars landscapes driven by erosional and climatic patterns\",\"authors\":\"Rhianna D. Moore, Timothy A. Goudge, Athanasios Klidaras, Briony H. N. Horgan, Adrian Broz, Robin Wordsworth, William H. Farrand\",\"doi\":\"10.1038/s41550-025-02584-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Across Mars exist thick clay mineral-bearing stratigraphies (CSs), thought to have formed through top-down leaching early in Mars’s geological history (>3.7 billion years ago) under warmer, wetter conditions than at present. On Earth, such deposits require specific landscape and climatic conditions to develop; however, it is unclear how Mars’s local and global topographic variations and past climate activity influenced surface weathering and CS formation. Here we present observations that show that CSs tend to occur in areas where chemical weathering was favoured over physical erosion, farther from valley network activity and nearer standing bodies of water. We conclude that the development of thick CSs through enhanced chemical weathering on this tectonically inactive planet may have led to an imbalanced weathering–climate feedback compared with Earth. Our results support the hypothesis that long-term irreversible sequestration of water and cations within clay minerals may have inhibited hydrological activity, and potentially carbonate mineral formation, over time.</p>\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41550-025-02584-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02584-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Deep chemical weathering on ancient Mars landscapes driven by erosional and climatic patterns
Across Mars exist thick clay mineral-bearing stratigraphies (CSs), thought to have formed through top-down leaching early in Mars’s geological history (>3.7 billion years ago) under warmer, wetter conditions than at present. On Earth, such deposits require specific landscape and climatic conditions to develop; however, it is unclear how Mars’s local and global topographic variations and past climate activity influenced surface weathering and CS formation. Here we present observations that show that CSs tend to occur in areas where chemical weathering was favoured over physical erosion, farther from valley network activity and nearer standing bodies of water. We conclude that the development of thick CSs through enhanced chemical weathering on this tectonically inactive planet may have led to an imbalanced weathering–climate feedback compared with Earth. Our results support the hypothesis that long-term irreversible sequestration of water and cations within clay minerals may have inhibited hydrological activity, and potentially carbonate mineral formation, over time.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.