基于二维等离子体光传感器阵列的时空信息处理仿生视觉系统。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-16 DOI:10.1002/smll.202503750
Tian Zhang, Linjun Li
{"title":"基于二维等离子体光传感器阵列的时空信息处理仿生视觉系统。","authors":"Tian Zhang,&nbsp;Linjun Li","doi":"10.1002/smll.202503750","DOIUrl":null,"url":null,"abstract":"<p>Compared to machine vision chips, the human visual system can continuously perceive and process static scene and dynamic motion from the ever-changing real world with extremely low power consumption in both spatial and temporal dimensions. However, current neuromorphic devices either only focus on preprocessing and recognizing images in spatial dimension, or only focus on encoding and discriminating specific partial information (such as event-driven information), lacking biological fidelity. An in-sensor spiking neural network (SNN) is presented, consisting of a 2D plasmonic photosensor array (PPSA) that mimics the human visual system's ability to efficiently perceive, preprocess, encode, and process frame-driven spatio-temporal information. The photothermoelectric effect caused by plasmonic hot electrons enables the device to consume zero energy when perceiving full-pixel spatio-temporal data. Stochastic electrical signals with a 500 ns sampling period encode constant optical signals into spike trains, enabling the trained SNN to achieve 96% recognition accuracy and accurately interpret patterns with chaotic temporal order.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Visual System Implemented by a Two-Dimensional Plasmonic Photosensor Array for Processing Spatio-Temporal Information\",\"authors\":\"Tian Zhang,&nbsp;Linjun Li\",\"doi\":\"10.1002/smll.202503750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compared to machine vision chips, the human visual system can continuously perceive and process static scene and dynamic motion from the ever-changing real world with extremely low power consumption in both spatial and temporal dimensions. However, current neuromorphic devices either only focus on preprocessing and recognizing images in spatial dimension, or only focus on encoding and discriminating specific partial information (such as event-driven information), lacking biological fidelity. An in-sensor spiking neural network (SNN) is presented, consisting of a 2D plasmonic photosensor array (PPSA) that mimics the human visual system's ability to efficiently perceive, preprocess, encode, and process frame-driven spatio-temporal information. The photothermoelectric effect caused by plasmonic hot electrons enables the device to consume zero energy when perceiving full-pixel spatio-temporal data. Stochastic electrical signals with a 500 ns sampling period encode constant optical signals into spike trains, enabling the trained SNN to achieve 96% recognition accuracy and accurately interpret patterns with chaotic temporal order.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 32\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503750\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503750","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与机器视觉芯片相比,人类视觉系统可以在空间和时间维度上以极低的功耗持续感知和处理不断变化的现实世界中的静态场景和动态运动。然而,目前的神经形态设备要么只关注图像在空间维度上的预处理和识别,要么只关注特定部分信息(如事件驱动信息)的编码和识别,缺乏生物保真度。提出了一种传感器内峰值神经网络(SNN),该网络由二维等离子体光敏传感器阵列(PPSA)组成,模拟了人类视觉系统有效感知、预处理、编码和处理帧驱动时空信息的能力。等离子体热电子引起的光热电效应使器件在感知全像素时空数据时能耗为零。采样周期为500ns的随机电信号将恒定的光信号编码到尖峰序列中,使训练后的SNN能够达到96%的识别准确率,并能准确地解释混沌时间顺序的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biomimetic Visual System Implemented by a Two-Dimensional Plasmonic Photosensor Array for Processing Spatio-Temporal Information

Biomimetic Visual System Implemented by a Two-Dimensional Plasmonic Photosensor Array for Processing Spatio-Temporal Information

Compared to machine vision chips, the human visual system can continuously perceive and process static scene and dynamic motion from the ever-changing real world with extremely low power consumption in both spatial and temporal dimensions. However, current neuromorphic devices either only focus on preprocessing and recognizing images in spatial dimension, or only focus on encoding and discriminating specific partial information (such as event-driven information), lacking biological fidelity. An in-sensor spiking neural network (SNN) is presented, consisting of a 2D plasmonic photosensor array (PPSA) that mimics the human visual system's ability to efficiently perceive, preprocess, encode, and process frame-driven spatio-temporal information. The photothermoelectric effect caused by plasmonic hot electrons enables the device to consume zero energy when perceiving full-pixel spatio-temporal data. Stochastic electrical signals with a 500 ns sampling period encode constant optical signals into spike trains, enabling the trained SNN to achieve 96% recognition accuracy and accurately interpret patterns with chaotic temporal order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信