二维磁性材料的超临界co2调控。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-16 DOI:10.1002/smll.202504839
Wei Lu, Qun Xu
{"title":"二维磁性材料的超临界co2调控。","authors":"Wei Lu,&nbsp;Qun Xu","doi":"10.1002/smll.202504839","DOIUrl":null,"url":null,"abstract":"<p>Supercritical carbon dioxide (SC CO₂), as a green solvent, demonstrates unique advantages in the synthesis and property modulation of 2D magnetic materials. This review systematically summarizes the synergistic strategies of SC CO₂, including defect engineering, chemical doping, lattice strain, and interface control, to effectively induce and enhance room-temperature ferromagnetism (RT FM) in 2D materials. Research indicates that SC CO₂ treatment significantly enhances magnetic performance by breaking chemical bonds (e.g., introducing unpaired electrons in B-doped graphene oxide with a saturation magnetization (Ms) of 1.71 emu g⁻¹) or regulating oxygen vacancies (e.g., achieving Ms = 0.3492 emu g⁻¹ in SrTiO<sub>3</sub> perovskite). Furthermore, SC CO₂ optimizes spin configurations via phase transitions (e.g., rhombohedral-to-cubic transformation in BiFeO<sub>3</sub>) and lattice strain, thereby strengthening superexchange interactions. Despite breakthroughs in graphene derivatives, transition metal oxides (e.g., VO₂ nanosheets), and perovskite systems, challenges remain in understanding microscopic mechanisms, ensuring material stability, and enabling scalable production. Future efforts should integrate advanced characterization and computational modeling to unravel SC CO₂-material interactions, advancing applications in spintronics and quantum devices.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercritical CO2-Regulation on 2D Magnetic Materials\",\"authors\":\"Wei Lu,&nbsp;Qun Xu\",\"doi\":\"10.1002/smll.202504839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supercritical carbon dioxide (SC CO₂), as a green solvent, demonstrates unique advantages in the synthesis and property modulation of 2D magnetic materials. This review systematically summarizes the synergistic strategies of SC CO₂, including defect engineering, chemical doping, lattice strain, and interface control, to effectively induce and enhance room-temperature ferromagnetism (RT FM) in 2D materials. Research indicates that SC CO₂ treatment significantly enhances magnetic performance by breaking chemical bonds (e.g., introducing unpaired electrons in B-doped graphene oxide with a saturation magnetization (Ms) of 1.71 emu g⁻¹) or regulating oxygen vacancies (e.g., achieving Ms = 0.3492 emu g⁻¹ in SrTiO<sub>3</sub> perovskite). Furthermore, SC CO₂ optimizes spin configurations via phase transitions (e.g., rhombohedral-to-cubic transformation in BiFeO<sub>3</sub>) and lattice strain, thereby strengthening superexchange interactions. Despite breakthroughs in graphene derivatives, transition metal oxides (e.g., VO₂ nanosheets), and perovskite systems, challenges remain in understanding microscopic mechanisms, ensuring material stability, and enabling scalable production. Future efforts should integrate advanced characterization and computational modeling to unravel SC CO₂-material interactions, advancing applications in spintronics and quantum devices.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 32\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504839\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504839","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超临界二氧化碳(SC CO₂)作为一种绿色溶剂,在二维磁性材料的合成和性能调制方面具有独特的优势。本文系统总结了SC CO₂的协同策略,包括缺陷工程、化学掺杂、晶格应变和界面控制,以有效地诱导和增强二维材料的室温铁磁性(RT FM)。研究表明,SC CO₂处理通过破坏化学键(例如,在b掺杂的氧化石墨烯中引入未配对电子,其饱和磁化(Ms)为1.71 emu g⁻¹)或调节氧空位(例如,在SrTiO3钙钛矿中实现Ms = 0.3492 emu g⁻¹)显着提高磁性。此外,SC CO₂通过相变(如BiFeO3中的菱形向立方转变)和晶格应变优化自旋构型,从而加强超交换相互作用。尽管石墨烯衍生物,过渡金属氧化物(例如,VO₂纳米片)和钙钛矿系统取得了突破,但在理解微观机制,确保材料稳定性和实现可扩展生产方面仍然存在挑战。未来的努力应该整合先进的表征和计算模型,以解开SC CO₂-材料相互作用,推进自旋电子学和量子器件的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Supercritical CO2-Regulation on 2D Magnetic Materials

Supercritical CO2-Regulation on 2D Magnetic Materials

Supercritical carbon dioxide (SC CO₂), as a green solvent, demonstrates unique advantages in the synthesis and property modulation of 2D magnetic materials. This review systematically summarizes the synergistic strategies of SC CO₂, including defect engineering, chemical doping, lattice strain, and interface control, to effectively induce and enhance room-temperature ferromagnetism (RT FM) in 2D materials. Research indicates that SC CO₂ treatment significantly enhances magnetic performance by breaking chemical bonds (e.g., introducing unpaired electrons in B-doped graphene oxide with a saturation magnetization (Ms) of 1.71 emu g⁻¹) or regulating oxygen vacancies (e.g., achieving Ms = 0.3492 emu g⁻¹ in SrTiO3 perovskite). Furthermore, SC CO₂ optimizes spin configurations via phase transitions (e.g., rhombohedral-to-cubic transformation in BiFeO3) and lattice strain, thereby strengthening superexchange interactions. Despite breakthroughs in graphene derivatives, transition metal oxides (e.g., VO₂ nanosheets), and perovskite systems, challenges remain in understanding microscopic mechanisms, ensuring material stability, and enabling scalable production. Future efforts should integrate advanced characterization and computational modeling to unravel SC CO₂-material interactions, advancing applications in spintronics and quantum devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信