{"title":"局部补体激活在肾纤维化和修复中的作用。","authors":"Didier Portilla,Vikram Sabapathy,Daniel Chauss","doi":"10.1172/jci188345","DOIUrl":null,"url":null,"abstract":"The complement system is an important component of the innate immune system involved in host defense and maintaining homeostasis. While the liver is the main source of complement proteins in the bloodstream, recent research has shown that various tissues, including the kidneys, can produce complement components locally in response to both acute and chronic inflammation. This Review highlights evidence from animal models of glomerular and tubulointerstitial kidney disease showing increased expression of intracellular complement in the kidneys. Studies using knockout mice for complement and complement receptors, along with complement inhibitors, have demonstrated that reduced complement activation in animal models of kidney fibrosis led to reduced inflammation and fibrosis, thereby supporting the pathogenic role of complement activation. Data from single-cell RNA-sequencing, spatial transcriptomics, and proteomics studies further demonstrate that alterations in local complement levels contribute to the fibrotic microenvironment observed in these models. Additionally, kidney biopsy results from patients with acute kidney injury and chronic kidney disease (CKD) indicate an increased expression of intracellular complement components as disease progresses. Developing drugs aimed at diminishing the expression and activation of local complement in glomerular and tubulointerstitial kidney disease could provide a novel approach to managing CKD.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of local complement activation in kidney fibrosis and repair.\",\"authors\":\"Didier Portilla,Vikram Sabapathy,Daniel Chauss\",\"doi\":\"10.1172/jci188345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complement system is an important component of the innate immune system involved in host defense and maintaining homeostasis. While the liver is the main source of complement proteins in the bloodstream, recent research has shown that various tissues, including the kidneys, can produce complement components locally in response to both acute and chronic inflammation. This Review highlights evidence from animal models of glomerular and tubulointerstitial kidney disease showing increased expression of intracellular complement in the kidneys. Studies using knockout mice for complement and complement receptors, along with complement inhibitors, have demonstrated that reduced complement activation in animal models of kidney fibrosis led to reduced inflammation and fibrosis, thereby supporting the pathogenic role of complement activation. Data from single-cell RNA-sequencing, spatial transcriptomics, and proteomics studies further demonstrate that alterations in local complement levels contribute to the fibrotic microenvironment observed in these models. Additionally, kidney biopsy results from patients with acute kidney injury and chronic kidney disease (CKD) indicate an increased expression of intracellular complement components as disease progresses. Developing drugs aimed at diminishing the expression and activation of local complement in glomerular and tubulointerstitial kidney disease could provide a novel approach to managing CKD.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci188345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci188345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of local complement activation in kidney fibrosis and repair.
The complement system is an important component of the innate immune system involved in host defense and maintaining homeostasis. While the liver is the main source of complement proteins in the bloodstream, recent research has shown that various tissues, including the kidneys, can produce complement components locally in response to both acute and chronic inflammation. This Review highlights evidence from animal models of glomerular and tubulointerstitial kidney disease showing increased expression of intracellular complement in the kidneys. Studies using knockout mice for complement and complement receptors, along with complement inhibitors, have demonstrated that reduced complement activation in animal models of kidney fibrosis led to reduced inflammation and fibrosis, thereby supporting the pathogenic role of complement activation. Data from single-cell RNA-sequencing, spatial transcriptomics, and proteomics studies further demonstrate that alterations in local complement levels contribute to the fibrotic microenvironment observed in these models. Additionally, kidney biopsy results from patients with acute kidney injury and chronic kidney disease (CKD) indicate an increased expression of intracellular complement components as disease progresses. Developing drugs aimed at diminishing the expression and activation of local complement in glomerular and tubulointerstitial kidney disease could provide a novel approach to managing CKD.