Byungsoo Kim,Jae Young Kim,Duyoung Yang,Sung Hyuk Park,Jung-El Ryu,Yoon Jung Lee,Hyuk Jin Kim,Joonyup Bae,Jihyun Kim,Yongjo Park,Ho Won Jang
{"title":"各向异性外延氧化镓膜的自供电紫外- c成像。","authors":"Byungsoo Kim,Jae Young Kim,Duyoung Yang,Sung Hyuk Park,Jung-El Ryu,Yoon Jung Lee,Hyuk Jin Kim,Joonyup Bae,Jihyun Kim,Yongjo Park,Ho Won Jang","doi":"10.1021/acsnano.5c01454","DOIUrl":null,"url":null,"abstract":"High efficiency of charge carrier conduction is crucial for photoelectrical performance in ultraviolet C (UVC) photodetectors (PDs) based on heteroepitaxial beta-gallium oxide (β-Ga2O3) thin films. However, the presence of in-plane rotational domains due to anisotropic symmetry severely degraded the efficiency of charge carrier conduction by trapping and recombination of carriers in conventional lateral PD (LPD). Here, we demonstrate an approach that enables vertical conduction configuration while preserving the high crystallinity of epitaxial Si-doped β-Ga2O3 (Si:Ga2O3) through the epilayer transfer using a hole pattern sapphire nanomembrane (HPSN) growth template. Based on the characterization of domain orientation and photoresponsivity in transferred epitaxial Si:Ga2O3 membranes, we reveal the defect-related anisotropic conduction arising from the vertical interdomain and lateral intradomain conduction. Compared to the indirect intradomain pathway in LPD, the vertical PD (VPD) exhibited high efficiency of charge carrier conduction through the direct interdomain pathways. As a result, the self-powered VPD exhibits high rectifying characteristics with a high detectivity of 1.02 × 1013 Jones and a fast response time of 93 ms. Moreover, the multipixel UVC imaging PD arrays have been successfully demonstrated without any external applied bias, showing high recognition rates and practical utility for reliable UVC imaging applications. Our work not only demonstrates the feasibility of obtaining single-crystal epitaxial membranes for a wide range of material systems but also provides pathways for overcoming material limitations with defect-induced optoelectrical systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"9 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Powered Ultraviolet-C Imaging Using Epitaxial Gallium Oxide Membranes with Anisotropic Domain Conduction.\",\"authors\":\"Byungsoo Kim,Jae Young Kim,Duyoung Yang,Sung Hyuk Park,Jung-El Ryu,Yoon Jung Lee,Hyuk Jin Kim,Joonyup Bae,Jihyun Kim,Yongjo Park,Ho Won Jang\",\"doi\":\"10.1021/acsnano.5c01454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High efficiency of charge carrier conduction is crucial for photoelectrical performance in ultraviolet C (UVC) photodetectors (PDs) based on heteroepitaxial beta-gallium oxide (β-Ga2O3) thin films. However, the presence of in-plane rotational domains due to anisotropic symmetry severely degraded the efficiency of charge carrier conduction by trapping and recombination of carriers in conventional lateral PD (LPD). Here, we demonstrate an approach that enables vertical conduction configuration while preserving the high crystallinity of epitaxial Si-doped β-Ga2O3 (Si:Ga2O3) through the epilayer transfer using a hole pattern sapphire nanomembrane (HPSN) growth template. Based on the characterization of domain orientation and photoresponsivity in transferred epitaxial Si:Ga2O3 membranes, we reveal the defect-related anisotropic conduction arising from the vertical interdomain and lateral intradomain conduction. Compared to the indirect intradomain pathway in LPD, the vertical PD (VPD) exhibited high efficiency of charge carrier conduction through the direct interdomain pathways. As a result, the self-powered VPD exhibits high rectifying characteristics with a high detectivity of 1.02 × 1013 Jones and a fast response time of 93 ms. Moreover, the multipixel UVC imaging PD arrays have been successfully demonstrated without any external applied bias, showing high recognition rates and practical utility for reliable UVC imaging applications. Our work not only demonstrates the feasibility of obtaining single-crystal epitaxial membranes for a wide range of material systems but also provides pathways for overcoming material limitations with defect-induced optoelectrical systems.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c01454\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c01454","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Powered Ultraviolet-C Imaging Using Epitaxial Gallium Oxide Membranes with Anisotropic Domain Conduction.
High efficiency of charge carrier conduction is crucial for photoelectrical performance in ultraviolet C (UVC) photodetectors (PDs) based on heteroepitaxial beta-gallium oxide (β-Ga2O3) thin films. However, the presence of in-plane rotational domains due to anisotropic symmetry severely degraded the efficiency of charge carrier conduction by trapping and recombination of carriers in conventional lateral PD (LPD). Here, we demonstrate an approach that enables vertical conduction configuration while preserving the high crystallinity of epitaxial Si-doped β-Ga2O3 (Si:Ga2O3) through the epilayer transfer using a hole pattern sapphire nanomembrane (HPSN) growth template. Based on the characterization of domain orientation and photoresponsivity in transferred epitaxial Si:Ga2O3 membranes, we reveal the defect-related anisotropic conduction arising from the vertical interdomain and lateral intradomain conduction. Compared to the indirect intradomain pathway in LPD, the vertical PD (VPD) exhibited high efficiency of charge carrier conduction through the direct interdomain pathways. As a result, the self-powered VPD exhibits high rectifying characteristics with a high detectivity of 1.02 × 1013 Jones and a fast response time of 93 ms. Moreover, the multipixel UVC imaging PD arrays have been successfully demonstrated without any external applied bias, showing high recognition rates and practical utility for reliable UVC imaging applications. Our work not only demonstrates the feasibility of obtaining single-crystal epitaxial membranes for a wide range of material systems but also provides pathways for overcoming material limitations with defect-induced optoelectrical systems.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.