{"title":"髓磷脂功能障碍在衰老和脑部疾病:机制和治疗机会。","authors":"Zhihai Huang,Yulan Zhang,Peibin Zou,Xuemei Zong,Quanguang Zhang","doi":"10.1186/s13024-025-00861-w","DOIUrl":null,"url":null,"abstract":"Myelin is a multilamellar membrane that surrounds axons in the vertebrate nervous system. Properly functioning myelin is essential for the rapid conduction of nerve impulses, and it metabolically supports axonal integrity. Emerging evidence indicates that myelin is also involved in various aspects of cognition, with adaptive myelination playing a critical role in memory consolidation and motor learning. However, these physiological processes can be disrupted in various diseases. Understanding the mechanisms underlying myelin pathology is therefore essential for the development of targeted therapies for associated medical conditions. This review provides a comprehensive overview of the role of myelin in neural function, with a particular focus on adaptive myelination in cognition. We also highlight myelin dysfunction and the underlying mechanisms in the aging brain, as well as in diverse brain disorders and neurological conditions, including neurodegenerative diseases, psychiatric conditions, brain injuries, chemotherapy-related cognitive impairment, and neurological symptoms associated with COVID-19. Furthermore, we discuss the therapeutic potential of recently identified pro-myelinating compounds in aging-associated cognitive decline and brain disorders, as well as the future of remyelination therapies. Current evidence suggests that restoring functional myelin may serve as a therapeutic strategy for various medical conditions associated with myelin dysfunction.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"22 1","pages":"69"},"PeriodicalIF":14.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myelin dysfunction in aging and brain disorders: mechanisms and therapeutic opportunities.\",\"authors\":\"Zhihai Huang,Yulan Zhang,Peibin Zou,Xuemei Zong,Quanguang Zhang\",\"doi\":\"10.1186/s13024-025-00861-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myelin is a multilamellar membrane that surrounds axons in the vertebrate nervous system. Properly functioning myelin is essential for the rapid conduction of nerve impulses, and it metabolically supports axonal integrity. Emerging evidence indicates that myelin is also involved in various aspects of cognition, with adaptive myelination playing a critical role in memory consolidation and motor learning. However, these physiological processes can be disrupted in various diseases. Understanding the mechanisms underlying myelin pathology is therefore essential for the development of targeted therapies for associated medical conditions. This review provides a comprehensive overview of the role of myelin in neural function, with a particular focus on adaptive myelination in cognition. We also highlight myelin dysfunction and the underlying mechanisms in the aging brain, as well as in diverse brain disorders and neurological conditions, including neurodegenerative diseases, psychiatric conditions, brain injuries, chemotherapy-related cognitive impairment, and neurological symptoms associated with COVID-19. Furthermore, we discuss the therapeutic potential of recently identified pro-myelinating compounds in aging-associated cognitive decline and brain disorders, as well as the future of remyelination therapies. Current evidence suggests that restoring functional myelin may serve as a therapeutic strategy for various medical conditions associated with myelin dysfunction.\",\"PeriodicalId\":18800,\"journal\":{\"name\":\"Molecular Neurodegeneration\",\"volume\":\"22 1\",\"pages\":\"69\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13024-025-00861-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-025-00861-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Myelin dysfunction in aging and brain disorders: mechanisms and therapeutic opportunities.
Myelin is a multilamellar membrane that surrounds axons in the vertebrate nervous system. Properly functioning myelin is essential for the rapid conduction of nerve impulses, and it metabolically supports axonal integrity. Emerging evidence indicates that myelin is also involved in various aspects of cognition, with adaptive myelination playing a critical role in memory consolidation and motor learning. However, these physiological processes can be disrupted in various diseases. Understanding the mechanisms underlying myelin pathology is therefore essential for the development of targeted therapies for associated medical conditions. This review provides a comprehensive overview of the role of myelin in neural function, with a particular focus on adaptive myelination in cognition. We also highlight myelin dysfunction and the underlying mechanisms in the aging brain, as well as in diverse brain disorders and neurological conditions, including neurodegenerative diseases, psychiatric conditions, brain injuries, chemotherapy-related cognitive impairment, and neurological symptoms associated with COVID-19. Furthermore, we discuss the therapeutic potential of recently identified pro-myelinating compounds in aging-associated cognitive decline and brain disorders, as well as the future of remyelination therapies. Current evidence suggests that restoring functional myelin may serve as a therapeutic strategy for various medical conditions associated with myelin dysfunction.
期刊介绍:
Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels.
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.